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Abstract 
This study evaluates the performance of Stacked Sparse Autoencoder (SSAE) 

combined with Support Vector Machine (SVM) against a standard SVM for 

classification tasks. We assessed both models using accuracy, precision, sensitivity, 

and F1 score. The SSAE Support Vector Machine significantly outperformed the 

standard SVM, achieving an accuracy of 89% compared to 37%. SSAE also 

achieved higher precision (87% vs. 75%) and sensitivity (89% vs. 37%), with an F1 

score of 88% versus 36% for the standard SVM. These results indicate that SSAE 

enhances the model’s ability to capture complex patterns and provide reliable 

predictions. This study highlights the effectiveness of SSAE in improving 

classification performance, suggesting further research with larger datasets and 

additional optimization techniques to maximize model efficiency. 
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1. Introduction 

Human Activity Recognition (HAR) has emerged as a significant area of research in the 

development of sensor-based and artificial intelligence technologies (Gupta et al., 2022). HAR 

applications span various sectors, including healthcare, sports, security, and human-computer 

interaction (Karim et al., 2024). With advancements in sensor technology embedded in mobile 

and wearable devices, collecting real-time human activity data has become easier and more 

accurate (Ramanujam, E, 2021). 

However, the main challenge in HAR lies in extracting relevant features from the raw data 

generated by these sensors (Lawi et al., 2019; Pablo Martínez et al., 2022). Sensor data, such as 

that from accelerometers and gyroscopes, often vary widely and are influenced by various 

factors, including movement speed, device orientation, and environmental conditions 

(Hardiyanti et al., 2018; Pires et al., 2016). Therefore, an effective method is required to 

perform feature extraction that can accurately recognize activity patterns (Alemayoh et al., 

2021). 

One promising approach to addressing this challenge is the use of the Stacked Sparse 

Autoencoder (Bai et al., 2022). SSAE is a neural network model consisting of multiple layers of 

autoencoders that are trained progressively and stacked hierarchically (Rubio et al., 2023). This 

model is capable of learning more complex and abstract feature representations from sensor 

data, which can then be used for human activity classification (Nafea et al., 2021). 

In this study, we implement the SSAE algorithm for recognizing human activities based on 

sensor data collected from wearable devices. The aim of this research is to evaluate the 

performance of SSAE in recognizing various types of human activities and to compare it with 
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other activity recognition methods. The results of this study are expected to contribute to the 

development of more accurate and efficient HAR systems. 

2. Method 

This research aims to implement and evaluate the Stacked Sparse Autoencoder (SSAE) 

algorithm for Human Activity Recognition (HAR) using sensor data from wearable devices. 

The methodology is divided into several key stages: data collection, data preprocessing, model 

development, training, and evaluation. 

 

 
 

Figure 1. Methology Research 

2.1 Data Collection 

The dataset for this study is collected using wearable devices equipped with sensors such as 

accelerometers and gyroscopes. These sensors capture continuous time-series data related to 

various human activities, including walking, running, sitting, standing, and cycling. The data is 

annotated with corresponding activity labels to facilitate supervised learning during model 

training (Tahir et al., 2022). 

• Devices Used: Wearable devices with embedded accelerometers and gyroscopes. 

• Data Collected: Raw sensor data representing different activities. 

2.2 Data Preprocessing 

Before feeding the data into the SSAE model, several preprocessing steps are performed to 

ensure the quality and consistency of the data: 

• Normalization: The raw sensor data is normalized to ensure that all features are on a 

similar scale, which helps in faster convergence during model training (Morales & 

Roggen, 2016). 

• Segmentation: The continuous time-series data is segmented into fixed-length 

windows (e.g., 5 seconds), with each window representing a segment of activity. 

Overlapping windows may also be used to enhance feature learning (Amaral et al., 

2022). 

• Noise Reduction: Techniques such as moving average filters or low-pass filters are 

applied to reduce noise and improve the signal quality (Magsi et al., 2018). 

 

 

2.3 Model Development 
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The core of this research involves the development of the Stacked Sparse Autoencoder 

(SSAE) model, which is designed to learn hierarchical features from the sensor data. 

• Autoencoder Layers: The SSAE is composed of multiple autoencoder layers, each 

with a specific number of hidden units. The sparsity constraint is applied to each layer 

to ensure that only a small subset of neurons is activated for any given input (Yan & 

Access, 2018). 

• Stacking Procedure: The autoencoders are trained layer by layer in an unsupervised 

manner. Once each layer is trained, it is stacked on top of the previous layer, and the 

combined model is fine-tuned using backpropagation (Xia et al., 2017). 

2.4 Model Training 

The SSAE model is trained using the preprocessed sensor data. The training process 

involves: 

• Unsupervised Pre-training: Each autoencoder layer is trained independently on the 

input data to minimize reconstruction error. 

• Fine-Tuning: After stacking all layers, the entire SSAE model is fine-tuned using 

supervised learning. The labeled data is used to adjust the weights of the network to 

minimize the classification error. 

• Optimization Algorithm: The model is optimized using Support Vector Machine, with 

appropriate learning rates and regularization parameters to prevent overfitting. 

2.5 Evaluation 

The performance of the SSAE model is evaluated using standard metrics such as accuracy, 

precision, recall, and F1-score (Yacouby & On, 2020). The evaluation process includes: 

• Train-Test Split: The dataset is divided into training and testing sets, with 80:20 for 

training and evaluation. 

• Cross-Validation: Cross-validation techniques are applied to ensure the robustness of 

the model. 

• Comparison with Baseline Models: The SSAE model's performance is compared with 

baseline models, such as traditional machine learning classifiers (SVM), to assess its 

effectiveness. 

2.6 Experimentation and Analysis 

After model training and evaluation, further experimentation is conducted to analyze the 

impact of different hyperparameters, such as the number of layers, hidden units, and sparsity 

levels, on the model's performance. Sensitivity analysis is also performed to understand the 

effect of sensor noise and data variability on the recognition accuracy. 

3. Results And Discussion 

The dataset used in this study consists of a total of 170,000 records of human activities 

collected using wearable devices such as smartphones. The dataset includes a variety of 

activities, ranging from simple to complex, such as walking, running, sitting, standing, climbing 

stairs, and descending stairs. Data collection was carried out under various environmental 

conditions to reflect real-world situations, including indoor activities such as sitting and 

standing, as well as outdoor activities like running or climbing and descending stairs. The data 

was obtained from a diverse group of subjects, encompassing variations in age, gender, and 

fitness levels, to ensure that the trained model achieves good generalization.   

 

The activity records were generated using sensors such as accelerometers, gyroscopes, and 

gravity sensors integrated into the devices, with data collected in real time to ensure accuracy. 

To enhance data quality, a data cleaning process was performed to address missing or 
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inconsistent data, and data balancing was conducted to ensure an even distribution of each 

activity. This dataset provides a robust foundation for developing accurate and reliable human 

activity recognition models. 

Model validation employs a K-fold cross-validation approach with k=5 to divide the dataset 

into five subsets. Four subsets are used for training, while the remaining subset serves as test 

data. This process is repeated until all subsets have been tested. The model's performance is 

evaluated using metrics such as accuracy, precision, sensitivity, and F1 score, with the average 

across folds providing a comprehensive performance measure. Additionally, the dataset is 

divided into 70% training, 15% validation, and 15% testing to ensure the model's stability on 

unseen data. Hyperparameter tuning involves optimizing various SSAE parameters to achieve 

the best model performance. Techniques such as grid search and random search are applied to 

identify the optimal parameter combinations. Key parameters include the number of hidden 

layers (tested between 2 to 5 layers), the number of neurons per layer (ranging from 64 to 512), 

learning rate (explored between 0.0001 and 0.1), dropout rate (ranging from 0.1 to 0.5), and 

L1/L2 regularization to control model complexity. The criteria for selecting the best parameter 

set are based on the highest F1 score achieved during validation. 

Once the optimal parameters are determined, the model is tested on an independent test set to 

measure its final performance and reliability. The results are compared against baseline models 

without tuning and other methods, such as Support Vector Machine (SVM) and Gradient 

Boosting, to demonstrate the SSAE model's superiority. The outcomes of the validation and 

testing processes are presented through confusion matrices, providing clear insights into the 

model's effectiveness. This rigorous procedure ensures that the developed SSAE model is not 

only accurate but also robust and generalizable across diverse datasets. 

In this study, the performance of the Support Vector Machine (SVM) and SSAE Support 

Vector Machine algorithms were compared using evaluation metrics such as accuracy, 

precision, sensitivity, and F1 score. The following table summarizes the performance of both 

algorithms: 

0 10 20 30 40 50 60 70 80 90 100
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Figure 2. Improvement Method 

 

 

Table 1. Result Performance. 

Algorithm Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) 

Support Vector Machine 37 75 37 36 
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SSAE Support Vector 
Machine 

89 87 89 88 

 

Accuracy is a key metric for assessing the overall performance of classification models, 

representing the proportion of correct predictions among all predictions made. The SSAE 

Support Vector Machine achieved a notable accuracy of 89%, a substantial improvement over 

the 37% accuracy observed with the standard SVM. This significant boost in accuracy can be 

attributed to SSAE’s ability to capture and utilize complex patterns within the data. SSAE, 

leveraging the principles of stacked sparse autoencoders, extracts more refined and meaningful 

feature representations from the input data, thereby enhancing the model's capability to 

distinguish between different classes effectively. 

Precision measures the proportion of true positive predictions among all positive predictions 

made by the model. The precision of the SVM was 75%, indicating a reasonable performance in 

identifying true positives, although it was limited by overall accuracy and sensitivity. 

Conversely, the SSAE Support Vector Machine demonstrated an improved precision of 87%. 

This indicates that SSAE is more effective in providing accurate positive predictions with fewer 

false positives, showcasing its enhanced consistency and reliability in identifying true positive 

cases. 

Sensitivity, or recall, gauges the model's ability to identify all actual positive instances 

within the dataset. The standard SVM exhibited a sensitivity of 37%, suggesting that it missed a 

significant number of true positive instances. This lower sensitivity highlights the model’s 

limitation in detecting relevant cases. In contrast, the SSAE Support Vector Machine achieved a 

sensitivity of 89%, reflecting its superior capability in identifying all actual positive cases 

accurately. This high sensitivity is particularly valuable in applications requiring comprehensive 

detection of positive instances, ensuring that the model is robust and effective in practical 

scenarios. 

The F1 Score combines precision and sensitivity into a single metric, providing a balanced 

view of the model’s performance. The F1 Score for the SVM was only 36%, underscoring an 

imbalance between correctly identifying positives and avoiding false positives. On the other 

hand, the SSAE Support Vector Machine reached an impressive F1 Score of 88%, signifying a 

strong balance between precision and sensitivity. This balance indicates that SSAE excels not 

only in accurately identifying positive instances but also in minimizing classification errors, 

leading to a more reliable overall performance. 

 

 

Discussion 

The considerable improvement in performance observed with the SSAE Support Vector 

Machine compared to the standard SVM underscores the effectiveness of the SSAE approach in 

handling complex classification tasks. The ability of SSAE to generate deeper and more 

informative feature representations from the data facilitates better pattern recognition and 

classification, addressing the shortcomings of traditional SVM models. 

Limitations and Recommendations: Despite the superior performance of SSAE, this study 

faces certain limitations. The size of the dataset used may affect the model's generalizability, 

and there is a risk of overfitting, especially if the data is not sufficiently diverse. Future research 

should focus on using larger and more varied datasets to validate these findings. Additionally, 

further exploration of regularization techniques and hyperparameter tuning for SSAE could 

further enhance model performance. 

Context of Application: The findings indicate that the SSAE Support Vector Machine is 

more effective in real-world applications where sensor data may be inconsistent and variable. 

The high precision and sensitivity make SSAE particularly suitable for scenarios where accurate 

and comprehensive detection is critical, such as in health monitoring systems or complex 

activity recognition tasks. 
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Overall, this research highlights the significant potential of SSAE in advancing machine 

learning models, especially in the domain of human activity recognition. The application of 

autoencoder techniques like SSAE offers substantial improvements in data classification tasks, 

paving the way for further exploration and application in diverse data classification domains. 

4. Conclusions 

This study has demonstrated that integrating Stacked Sparse Autoencoder (SSAE) with 

Support Vector Machine (SVM) significantly enhances the performance of classification models 

compared to using a standard SVM alone. The SSAE Support Vector Machine exhibited 

superior results across all evaluated metrics—accuracy, precision, sensitivity, and F1 score—

highlighting its effectiveness in handling complex classification tasks. 

The SSAE algorithm's ability to extract and utilize more refined feature representations from 

the data led to a dramatic increase in accuracy, reaching 89%, compared to just 37% with the 

standard SVM. This substantial improvement underscores the potential of SSAE in capturing 

intricate patterns within the data, which is crucial for applications requiring high precision and 

sensitivity. 

Additionally, the enhanced precision (87%) and sensitivity (89%) achieved by SSAE 

indicate that this model is not only better at correctly identifying positive instances but also 

more reliable in detecting all relevant cases. The high F1 score of 88% further confirms that 

SSAE provides a well-balanced performance, effectively combining precision and sensitivity to 

minimize classification errors. 

Overall, the results of this study highlight the significant advantages of employing SSAE in 

conjunction with SVM for improved classification performance. This approach is particularly 

beneficial in scenarios where accurate detection and classification of complex data are critical. 

Future work should focus on expanding this research by using larger and more diverse datasets, 

exploring additional regularization techniques, and fine-tuning model parameters to further 

enhance performance. The promising results from this study advocate for continued exploration 

and application of advanced autoencoder techniques in various machine learning domains. 
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