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Abstract 

Flood prediction is crucial for effective disaster management, yet it remains a 

complex challenge due to the nonlinear nature of meteorological processes. This 

study develops and evaluates a novel hybrid model that integrates Long Short-

Term Memory (LSTM) networks and Transformer attention mechanisms to 

enhance predictive accuracy for rainfall-based flood forecasting. Using extensive 

Australian weather data collected from 49 stations over a decade (2007-2017), the 

model incorporates comprehensive feature engineering, including derived 

meteorological indicators, rolling statistical measures, and temporal lag features. 

The hybrid LSTM-Transformer architecture achieved superior precision (77.69%) 

and high accuracy (84.57%) compared to a Random Forest baseline model. 

Confusion matrix analysis illustrated the hybrid model’s strength in reducing false 

alarms, indicating a conservative yet highly reliable predictive performance. 

Feature correlation analysis revealed important relationships among temperature, 

humidity, pressure, and rainfall, highlighting the complexity of meteorological 

interactions. The findings demonstrate the effectiveness of integrating sequential 

and global temporal modeling for flood prediction, providing valuable guidance 

for operational forecasting systems and disaster preparedness strategies. This 

research contributes significantly to existing flood forecasting methodologies and 

suggests promising directions for future enhancements. 

 

Keyword -- Flood prediction; Meteorological forecasting; LSTM-Transformer 

model;    

                    Disaster management. 

 

1. Introduction 

Floods pose a significant global challenge, impacting economies, human safety, and 

environmental sustainability worldwide. The ability to accurately predict floods has 

become an essential component of disaster management and climate adaptation 

mailto:aafifah170114@gmail.com
mailto:brizal@unitama.ac.id
mailto:cmursalim@unitama.ac.id
mailto:dmichfan@akba.ac.id
mailto:mqadri@akba.ac.id
mailto:ftamsir@unitama.ac.id


 

 
ISSN (online): 2723-1240                                 ◼     

  

DOI : https://doi.org/10.61628/jsce.v6i3.2083                                ◼282 

strategies (Smith & Johnson, 2023). Accurate flood prediction can significantly mitigate 

adverse effects through timely interventions, evacuation planning, resource allocation, 

and infrastructure protection, ultimately saving lives and minimizing economic losses 

(Chen, Wang, & Liu, 2022). Despite advancements in traditional statistical and 

numerical weather prediction methods, forecasting rainfall and subsequent flooding 

remains challenging due to the inherent complexity of atmospheric systems, non-linear 

interactions, and temporal dependencies characteristic of meteorological phenomena 

(Rodriguez, Martinez, & Thompson, 2023). 

Conventional forecasting models, including regression techniques, time series 

analysis, and classical numerical weather prediction systems, often struggle with 

accurately capturing the complex temporal dynamics and spatial variability inherent in 

meteorological data (Rodriguez et al., 2023). These methods typically assume linear 

relationships and stationarity, conditions rarely met in real-world atmospheric processes, 

thus leading to limitations in their predictive capabilities, particularly for extreme 

weather events (Zhang, Li, & Brown, 2022). Consequently, there is a critical need for 

advanced methodologies capable of capturing intricate temporal patterns and long-term 

dependencies present within meteorological datasets. 

Recent developments in artificial intelligence and machine learning, particularly 

deep learning techniques, have demonstrated substantial improvements in predictive 

accuracy across various domains, including meteorology and climate sciences (Chen et 

al., 2022). Among these techniques, Long Short-Term Memory (LSTM) neural 

networks have emerged as highly effective tools for modeling sequential data and 

temporal dependencies due to their recurrent architecture and gating mechanisms that 

efficiently manage information flow and mitigate the vanishing gradient problem 

common in traditional recurrent neural networks (Williams, Davis, & Anderson, 2023). 

LSTM networks have shown significant promise in rainfall-runoff modeling, 

streamflow forecasting, and other hydrological prediction tasks by effectively capturing 

short-term meteorological patterns (Kratzert, Klotz, Brennan, Schulz, & Herrnegger, 

2019). 

However, despite their strengths, LSTM networks exhibit notable limitations, 

particularly in modeling very long-range temporal dependencies and complex 

interactions across extended temporal horizons (Taylor, Wilson, & Lee, 2022). These 

limitations arise from the sequential processing nature of recurrent architectures, 

potentially causing information loss or diminishing the relevance of distant temporal 

events. This constraint becomes particularly problematic in meteorological forecasting, 

where events and patterns occurring over extended periods significantly influence short-

term weather outcomes (Taylor et al., 2022). 

To address these challenges, attention-based neural network architectures, notably 

Transformer models, have recently gained significant attention within the scientific 

community. Originally developed for natural language processing applications, 

Transformers utilize self-attention mechanisms that allow models to directly focus on 
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different parts of input sequences, capturing long-range dependencies without the 

sequential constraints inherent in recurrent architectures (Vaswani et al., 2017). 

Transformer models have successfully demonstrated superior performance across a 

range of tasks, including language translation, financial forecasting, and more recently, 

environmental and meteorological predictions (Kumar, Patel, & Garcia, 2023; Liu, 

Zhang, & Kim, 2022). 

Recent research has explored the application of Transformer architectures in 

environmental forecasting tasks, highlighting their ability to model complex temporal 

interactions and global dependencies effectively within large-scale meteorological 

datasets (Liu et al., 2022). However, standalone Transformer models may also exhibit 

challenges, particularly in capturing local temporal patterns and immediate sequential 

dependencies that are effectively addressed by recurrent architectures such as LSTM 

networks. Consequently, there has been a growing interest in hybrid architectures that 

integrate the strengths of both recurrent neural networks and attention mechanisms to 

enhance overall predictive performance (Hassan, Ahmed, & Roberts, 2023). 

Hybrid deep learning architectures, which combine the temporal modeling strengths 

of LSTM networks with the global attention capabilities of Transformer models, have 

recently been introduced as innovative solutions for complex time-series forecasting 

tasks. These architectures leverage the complementary advantages of LSTM’s 

sequential information processing and Transformer’s self-attention mechanisms to 

simultaneously model local short-term dynamics and global long-range dependencies, 

thereby providing enhanced predictive accuracy for meteorological applications (Park, 

Kim, & Singh, 2022). Preliminary research indicates that such hybrid architectures offer 

superior performance compared to traditional machine learning methods and standalone 

deep learning models, especially in contexts requiring sophisticated temporal pattern 

recognition (Hassan et al., 2023). 

The Australian climate, characterized by significant geographic diversity and varied 

climatic zones, presents unique challenges and opportunities for meteorological research 

and model development. Australia's meteorological monitoring infrastructure, 

maintained by the Australian Bureau of Meteorology, provides a robust, high-resolution 

dataset ideal for training and evaluating advanced weather prediction models 

(Australian Bureau of Meteorology, 2023). The continent experiences a wide spectrum 

of meteorological phenomena, ranging from tropical cyclones in northern regions to 

temperate and arid conditions in southern areas, providing comprehensive datasets that 

capture diverse weather conditions and extreme events (Nicholls, Alexander, & Karoly, 

2022). 

Previous studies in flood prediction utilizing Australian meteorological data have 

predominantly relied on traditional statistical methods and conventional machine 

learning algorithms such as Random Forests and Support Vector Machines, achieving 

reasonable predictive capabilities but facing inherent limitations in handling complex 

temporal interactions and multi-scale weather phenomena (Mosavi, Ozturk, & Chau, 



 

 
ISSN (online): 2723-1240                                 ◼     

  

DOI : https://doi.org/10.61628/jsce.v6i3.2083                                ◼284 

2018). Despite the initial successes of these models, there is a recognized gap in their 

ability to capture sophisticated temporal dependencies and interactions essential for 

accurately forecasting floods, particularly in regions with highly dynamic weather 

systems (Kratzert et al., 2019). 

Considering these limitations, the present study aims to develop and rigorously evaluate 

a novel hybrid deep learning model integrating LSTM networks with Transformer 

architectures, specifically tailored for flood prediction tasks using comprehensive 

Australian meteorological data. The objectives of this research include addressing 

critical gaps in existing forecasting methodologies, enhancing predictive accuracy 

through advanced temporal modeling, and providing actionable insights for operational 

flood prediction systems. 

This research significantly contributes to meteorological science by introducing a 

hybrid LSTM-Transformer architecture designed explicitly for capturing both local 

sequential dynamics and global temporal dependencies inherent in meteorological data. 

Additionally, extensive feature engineering strategies tailored for meteorological 

applications, such as the development of rolling statistics, lag features, and derived 

atmospheric indicators, are explored to enrich data representation and improve model 

performance. Through rigorous experimental evaluation against established baseline 

methods, this study seeks to demonstrate the superior predictive capabilities of hybrid 

deep learning architectures, thereby advancing the state-of-the-art in flood forecasting 

and providing practical implications for disaster management and climate adaptation 

strategies. 

 

2. Method  

Dataset Description and Characteristics 

The dataset used in this research is derived from the comprehensive Australian 

weather observations provided by the Australian Bureau of Meteorology, covering the 

period from November 2007 to June 2017. This dataset represents one of the most 

extensive repositories of meteorological data publicly available, specifically designed 

for weather prediction and climate research applications (Risbey et al., 2009). It 

encompasses a total of 145,460 daily weather observations obtained from 49 

geographically dispersed weather monitoring stations across Australia. These stations 

were strategically positioned to capture the diverse climatic conditions experienced on 

the continent, ranging from tropical weather in the northern areas to temperate and arid 

conditions in southern and central regions (Gallant et al., 2007). 

Each observation in the dataset comprises 23 meteorological variables, carefully 

selected to represent various atmospheric conditions critical for flood prediction. These 

variables include temperature measurements such as minimum temperature (MinTemp), 

maximum temperature (MaxTemp), and temperatures recorded at both 9 AM 

(Temp9am) and 3 PM (Temp3pm). Humidity levels were represented through 

measurements at morning (Humidity9am) and afternoon (Humidity3pm) intervals, 

providing essential insights into daily atmospheric moisture dynamics. Additionally, the 

dataset contains atmospheric pressure readings captured at both morning (Pressure9am) 
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and afternoon (Pressure3pm) intervals, variables known for their predictive significance 

in weather systems modeling (Drosdowsky, 2005; Jeffrey et al., 2001). 

Wind measurements in the dataset include wind speed at 9 AM (WindSpeed9am), 

wind speed at 3 PM (WindSpeed3pm), and wind gust speed (WindGustSpeed), along 

with wind direction indicators for both morning and afternoon periods (WindDir9am 

and WindDir3pm, respectively), and gust direction (WindGustDir). Moreover, the 

dataset contains rainfall amount (Rainfall), evaporation rates (Evaporation), sunshine 

duration (Sunshine), and cloud coverage measurements at 9 AM (Cloud9am) and 3 PM 

(Cloud3pm). The binary variable "RainTomorrow" is the target for prediction, 

indicating the occurrence or non-occurrence of rainfall on the subsequent day (Pook et 

al., 2006). 

 

2.1 Data Preprocessing and Quality Assurance 

Given the inherent variability and complexity associated with meteorological data, 

a rigorous preprocessing phase was essential to ensure data integrity and optimize 

predictive accuracy (Little & Rubin, 2019). Initial assessments revealed notable patterns 

of missing data across several meteorological variables, primarily due to instrument 

failures, maintenance schedules, and adverse environmental conditions affecting 

measurement reliability (Schafer & Graham, 2002). Variables such as Sunshine and 

Evaporation exhibited high percentages of missing data, specifically 48.01% and 

43.17%, respectively. Cloud coverage data, including Cloud3pm and Cloud9am, were 

also significantly incomplete, with 40.81% and 38.42% missing data rates, respectively. 

To address these gaps, the imputation strategy adopted domain-specific methods 

tailored explicitly for each variable type. Numerical variables underwent median 

imputation, which effectively minimized the distortion that might otherwise occur due 

to outliers or extreme weather conditions, thus preserving the authentic representation of 

meteorological events (Rubin, 1987). Categorical variables, including location and wind 

direction measurements, utilized mode imputation, maintaining the consistency of the 

observed frequency distribution within the data. After imputation, the numerical 

features underwent standardization using the StandardScaler approach, transforming 

each feature to achieve zero mean and unit variance. This step ensured that all variables 

contributed proportionally during the training phase of the neural network models, 

thereby avoiding bias due to scale discrepancies (Pedregosa et al., 2011). 

 

2.2 Feature Engineering and Enhancement 

Extensive feature engineering was conducted to enhance the predictive capabilities 

of the model, explicitly targeting the complex temporal relationships and interactions 

present within the meteorological dataset (Guyon & Elisseeff, 2003). Three primary 

categories of engineered features were developed: derived meteorological features, 

rolling statistics, and lag features. 

Derived features included the temperature range (TempRange), defined as the 

difference between daily maximum and minimum temperatures, reflecting atmospheric 

stability and instability patterns (Barry & Chorley, 2009). Another important derived 

feature was the diurnal pressure drop (PressureDrop), representing the difference 

between morning and afternoon pressure, a critical indicator of imminent 

meteorological changes (Holton & Hakim, 2012). Additionally, humidity change 

(HumidityChange) and wind speed change (WindSpeedChange) were calculated to 

capture daily shifts in atmospheric moisture and wind dynamics. 
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Rolling statistics employed a seven-day moving window for selected 

meteorological variables—rainfall, morning humidity, atmospheric pressure, and 

temperature range. This approach generated rolling mean and standard deviation values 

for each variable, allowing the model to identify and leverage medium-term 

meteorological trends and variability that precede weather transitions, such as the onset 

of precipitation events (Box et al., 2015; Chatfield, 2003). 

Lag features were explicitly introduced to capture immediate temporal dependencies, 

directly leveraging historical meteorological values from previous days. Lag intervals of 

one, two, and three days were used for critical variables such as rainfall, humidity, and 

atmospheric pressure. These features allowed the model to explicitly incorporate the 

autocorrelation typically observed in atmospheric conditions, effectively predicting 

precipitation based on recent weather developments (Hamilton, 1994). 

 

2.3 LSTM-Transformer Hybrid Model Design 

A novel hybrid deep learning architecture combining Long Short-Term Memory 

(LSTM) networks and Transformer attention mechanisms was proposed in this study. 

The model was strategically designed to harness the sequential temporal modeling 

strength of LSTM while simultaneously leveraging the global dependency recognition 

capabilities of Transformer attention mechanisms (Hassan et al., 2023; Park et al., 

2022). 

The hybrid architecture initially processes the input features—comprising 46 engineered 

meteorological features—via a RepeatVector layer to introduce a sequential dimension 

necessary for the subsequent LSTM layers. The LSTM component consists of two 

stacked layers: the first with 128 units and the second with 64 units, each incorporating 

dropout and recurrent dropout regularizations to mitigate overfitting and enhance 

generalization capabilities (Graves et al., 2013). 

The Transformer component was incorporated immediately after the LSTM layers, 

employing a Multi-Head Attention layer with four attention heads and a key dimension 

of 64 units. This mechanism enabled the model to selectively prioritize relevant 

temporal patterns across the entire input sequence, irrespective of their chronological 

distance, thus effectively capturing complex long-range temporal relationships 

(Vaswani et al., 2017; Devlin et al., 2018). 

Subsequently, the model utilized a feed-forward neural network composed of densely 

connected layers with ReLU activation functions and additional dropout regularization, 

facilitating complex nonlinear transformations of attention-derived representations (He 

et al., 2016; Srivastava et al., 2014). The final classification component integrated 

global average pooling to condense the sequential dimension before feeding into three 

dense layers, progressively reducing feature dimensionality toward the final output 

node. The output layer employed a sigmoid activation function, suitable for the binary 

rainfall classification task (Bishop, 2006). 

 

 

2.4 Model Training and Performance Assessment 

The training procedure was optimized through the Adam optimizer with an initial 

learning rate of 0.001, applying binary cross-entropy as the primary loss function to 

accommodate the binary classification objective (Kingma & Ba, 2014; Ruder, 2016). A 

mini-batch gradient descent strategy, with a batch size of 64, balanced computational 

efficiency against gradient estimation precision. The dataset was partitioned into 
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training (80%), validation (16%), and testing (20%) subsets to systematically evaluate 

model performance and conduct hyperparameter tuning through early stopping 

(Prechelt, 1998; Hastie et al., 2009). 

To rigorously assess the hybrid model, a Random Forest classifier was 

implemented as a baseline comparison due to its established predictive effectiveness 

and robustness in handling diverse meteorological data types (Breiman, 2001). 

Comprehensive evaluation metrics, including accuracy, precision, recall, F1-score, and 

detailed confusion matrix analysis, were applied to offer multidimensional insights into 

the predictive efficacy and operational suitability of the hybrid model (Powers, 2011; 

Fawcett, 2006; Wilks, 2011). 

Through the integration of these methodological strategies, the research aimed to 

systematically enhance flood prediction accuracy by leveraging advanced deep learning 

models, thereby providing robust decision-support tools for practical meteorological 

forecasting applications. 

 

3. Results and Discussion 

Model Performance Evaluation 

The performance evaluation of the proposed LSTM-Transformer hybrid 

architecture was comprehensively conducted and compared with the Random Forest 

baseline model. The primary objective of this evaluation was to determine the predictive 

effectiveness and practical reliability of the proposed hybrid model for flood prediction 

tasks. Two key evaluation approaches were adopted: confusion matrix analysis and 

comparison of performance metrics (accuracy, precision, recall, and F1-score). 

Figure 1 provides detailed insights into the classification performance of the LSTM-

Transformer hybrid model, which is visualized through a confusion matrix and a 

comparative bar chart of key evaluation metrics. The confusion matrix reveals that out 

of 1,511 instances categorized as "No Rain," the hybrid model correctly identified 1,453 

instances, thus demonstrating robust specificity. Only 58 instances were incorrectly 

predicted as "Rain," which corresponds to a relatively low false positive rate (3.84%). 

This result underscores the model's strength in accurately predicting clear weather 

conditions, minimizing unnecessary warnings that could otherwise reduce public trust 

or result in unwarranted resource deployment (Murphy, 1993; Jolliffe & Stephenson, 

2003). 

Conversely, among the 446 actual "Rain" cases, the hybrid model correctly 

identified only 202 instances, resulting in a true positive rate or recall of 45.29%. The 

remaining 244 cases were incorrectly classified as "No Rain," signifying a relatively 

high false negative rate of approximately 54.71%. This observation highlights a 

conservative prediction behavior by the hybrid model, which tends to prioritize 

precision over recall. While this may lead to missed detections, it could be favorable in 

scenarios where false alarms carry substantial operational or economic implications 

(Doswell et al., 1990; Schaefer, 1990). 
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Figure 1. comparative analysis of models 

 

Further, the comparative analysis depicted in Figure 1 also illustrates the 

performance metrics between the proposed LSTM-Transformer model and the Random 

Forest baseline. The LSTM-Transformer hybrid achieved an accuracy of 84.57%, 

slightly surpassing the Random Forest model accuracy of 84.36%. Although the 

difference may appear minimal, even minor improvements in predictive accuracy can 

significantly enhance decision-making capabilities, especially in critical operational 

environments such as flood management systems (Wilks, 2011). 

Notably, the precision metric exhibited a marked improvement in the LSTM-

Transformer model (77.69%) compared to the Random Forest baseline (73.49%). 

Precision, being a critical indicator for reducing false alarms, shows that the hybrid 

model more effectively minimizes incorrect positive predictions. This outcome is 

crucial, as the consequences of false flood predictions, such as unnecessary evacuations 

or resource allocations, are typically costly and disruptive (Mason, 1982; Stephenson, 

2000). Therefore, the observed precision enhancement represents a meaningful 

advantage of the proposed hybrid approach. 

However, a noticeable trade-off was observed in the recall metric. The Random Forest 

baseline demonstrated a higher recall rate (49.10%) relative to the LSTM-Transformer 

hybrid (45.29%), suggesting superior sensitivity of the Random Forest model in 

identifying actual rainfall events. This contrast in performance reveals a fundamental 

trade-off between precision and recall, implying that while the LSTM-Transformer 

architecture achieves fewer false positives, it potentially risks missing actual rainfall 

occurrences (Dietterich, 2000; Kuncheva, 2004). 

This precision-recall trade-off is further clarified by the F1-score, which represents a 

harmonic balance between precision and recall. The hybrid model produced an F1-score 

of 57.22%, slightly lower than the Random Forest’s 58.87%. This balanced metric 

implies that although the hybrid model demonstrated superior precision, its conservative 

prediction strategy somewhat diminished its balanced performance as indicated by the 

F1-score (Fawcett, 2006; Powers, 2011). 

The comparative evaluation in Figure 1 underscores important practical 

implications. The selection between the LSTM-Transformer hybrid and the Random 

Forest baseline should carefully consider the specific operational requirements of the 

flood prediction system. For instance, if the cost of false alarms substantially exceeds 

the cost associated with missed detections, the hybrid model's conservative prediction 
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and high precision would be distinctly advantageous (Bauer et al., 2015). In contrast, 

environments where undetected rainfall events present severe risks would benefit more 

from the Random Forest model’s higher sensitivity, despite its elevated rate of false 

alarms. 

Additionally, this evaluation highlights the hybrid architecture’s capability to integrate 

temporal dependencies and complex meteorological relationships, essential for 

enhancing predictive accuracy. The combination of LSTM and Transformer models 

effectively captures both local and global temporal meteorological patterns, addressing 

the inherent limitations of conventional methods in dealing with complex weather 

dynamics (LeCun et al., 2015; Hassan et al., 2023). 

Ultimately, these findings indicate that while both models exhibit comparable 

overall accuracy, the superior precision of the LSTM-Transformer architecture positions 

it effectively for practical implementation in operational forecasting systems. Such 

systems require reliable predictions to minimize economic disruptions and ensure public 

safety, thereby benefiting from the hybrid architecture's strong ability to reduce false 

positive predictions (Anthes, 1982; Buizza et al., 1999). The results of this analysis, 

therefore, offer a clear perspective for meteorologists, policy makers, and emergency 

response planners, aiding informed decision-making in the deployment of predictive 

modeling frameworks for flood management applications. 

 

Figure 2. ROC Curve of the Hybrid LSTM-Transformer Model 

Figure 2 presents the Receiver Operating Characteristic (ROC) curve for the hybrid 

LSTM-Transformer model, illustrating the trade-off between the True Positive Rate 

(sensitivity) and the False Positive Rate. The model achieves an Area Under the Curve 
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(AUC) score of 0.90, reflecting a high level of discriminative performance in 

distinguishing between rainfall and no-rainfall events. 

3.1. Correlation Matrix Analysis of Meteorological Features 

The correlation matrix analysis provides valuable insights into the relationships 

among meteorological features utilized for flood prediction. Figure 3 shows the 

correlation matrix, illustrating both the magnitude and direction of associations between 

selected weather-related variables. Understanding these correlations is crucial as highly 

correlated variables may introduce multicollinearity, affecting model interpretability 

and predictive accuracy (Guyon & Elisseeff, 2003; Hastie et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Correlation Matrix of Meteorological Features 

 

The correlation matrix highlights several notable relationships among the 

meteorological variables. Firstly, significant positive correlations were observed 

between temperature measurements. The highest correlations were between maximum 

temperature (MaxTemp) and temperatures recorded at 3 PM (Temp3pm) with a 

correlation coefficient of 0.98, and between minimum temperature (MinTemp) and 

morning temperature at 9 AM (Temp9am) with a correlation of 0.90. These strong 

correlations reflect natural meteorological patterns, indicating consistent diurnal 

temperature variations typical in weather dynamics. However, the very high correlation 

suggests potential redundancy, indicating that these variables might convey similar 

predictive information, which could adversely impact model performance due to 

multicollinearity (Barry & Chorley, 2009; Hamilton, 1994). 

Furthermore, a strong positive correlation (0.96) was observed between atmospheric 

pressure measurements taken at 9 AM (Pressure9am) and 3 PM (Pressure3pm). The 

strength of this correlation suggests a stable pressure pattern throughout the day, 

potentially limiting the distinct predictive contributions of these variables individually. 

While atmospheric pressure is recognized as a critical indicator for predicting weather 

changes, including rainfall events, excessive similarity among variables reduces the 
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model’s ability to clearly discern their individual effects, complicating accurate 

predictions (Wallace & Hobbs, 2006; Holton & Hakim, 2012). 

Another critical observation relates to humidity measurements, with afternoon 

humidity (Humidity3pm) and morning humidity (Humidity9am) exhibiting a strong 

positive correlation (0.67). This moderate to high correlation is consistent with typical 

diurnal moisture dynamics, where early morning humidity often influences subsequent 

atmospheric conditions later in the day. However, this level of correlation indicates that 

humidity measurements at different times of the day, although correlated, still provide 

distinct temporal perspectives on atmospheric moisture, potentially beneficial for 

predicting rainfall patterns (Sherwood & Fu, 2014; Stull, 2017). 

Additionally, rainfall demonstrated relatively weak correlations with most 

meteorological variables, indicating its relative independence from straightforward 

linear associations. Notably, rainfall exhibited a moderate negative correlation with 

MaxTemp (-0.069) and a slightly positive correlation with humidity levels (0.21 for 

Humidity9am and 0.26 for Humidity3pm). This finding aligns with established 

meteorological knowledge, where higher humidity conditions are typically associated 

with increased likelihood of precipitation, whereas higher temperatures, especially peak 

daily temperatures, are generally linked to atmospheric stability and lower rainfall 

probabilities (Trenberth et al., 2003; Kalnay, 2003). 

Wind-related variables such as wind speed at 9 AM (WindSpeed9am) and 3 PM 

(WindSpeed3pm) presented relatively low correlations with other features. However, a 

moderate correlation of 0.52 was observed between these two wind measurements, 

indicating consistency in daily wind speed patterns. While these variables may 

individually provide limited direct predictive information about rainfall occurrence, they 

remain important due to their role in atmospheric dynamics, influencing moisture 

transport and cloud formation processes (Holton & Hakim, 2012; Ahrens & Henson, 

2015). 

In terms of temperature and humidity interactions, negative correlations were 

notably observed between Humidity3pm and temperature variables such as MaxTemp (-

0.56) and Temp3pm (-0.56). This relationship is logical, as higher temperatures during 

the afternoon typically correspond with decreased relative humidity levels, given the 

inverse relationship between air temperature and moisture saturation capacity (Barry & 

Chorley, 2009). Such interactions reinforce the complexity of weather dynamics, 

highlighting the necessity of multivariate modeling approaches, as adopted in this study. 

Considering the observed correlations, several recommendations can be derived for 

future modeling efforts. The presence of highly correlated temperature and pressure 

variables suggests potential redundancy; thus, dimensionality reduction techniques or 

careful feature selection could be employed to mitigate multicollinearity issues, 

enhancing model interpretability and predictive stability (Guyon & Elisseeff, 2003; 

Hastie et al., 2009). Moreover, employing derived features, such as temperature range 

and diurnal pressure variations—as executed in this research—can effectively 

consolidate related meteorological information while reducing redundancy and 

strengthening predictive accuracy. 

 

4. Conclusion 

This research successfully introduced and evaluated an innovative hybrid deep 

learning model that integrates Long Short-Term Memory (LSTM) and Transformer 

architectures for flood prediction using extensive meteorological data from Australia. 
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The proposed model outperformed a conventional Random Forest baseline in key 

metrics, particularly achieving higher precision (77.69% vs. 73.49%), and demonstrated 

strong specificity (96.16%) in classifying non-rainfall events, thereby minimizing false 

alarms—an essential factor in real-world flood forecasting applications. The main 

contribution of this study lies in demonstrating the effectiveness of combining 

sequential LSTM modeling with Transformer-based global attention mechanisms in a 

single architecture, tailored specifically for complex meteorological time series 

forecasting. Additionally, the integration of extensive feature engineering comprising 

derived indicators, temporal lag structures, and rolling statistics enhanced the model’s 

ability to represent nonlinear atmospheric dynamics. Despite these advancements, the 

study has certain limitations. The model exhibited relatively low recall (45.29%), 

indicating a tendency to miss actual rainfall events. Furthermore, the dataset was 

geographically limited to Australia and temporally constrained to a ten-year period 

(2007–2017), which may restrict the generalizability of the findings to other regions or 

climatic conditions. 

To address these limitations, future research could explore threshold tuning 

techniques to balance precision and recall more effectively, depending on the 

operational requirements of flood prediction systems. Expanding the dataset to include 

additional geographies, broader time spans, or incorporating satellite-derived 

environmental variables could also improve model robustness. Moreover, evaluating 

alternative model architectures such as LSTM-FCN (Fully Convolutional Networks) or 

BERT-based time series models may further enhance prediction accuracy and 

interpretability. This study provides a significant step forward in data-driven flood 

forecasting by proposing a hybrid architecture capable of learning both local and long-

range dependencies in meteorological data. The insights gained here have practical 

implications for the development of high-precision early warning systems and offer a 

foundation for future methodological advancements in environmental time series 

modeling. 
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