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Abstract 
This study presents the development of an intelligent system for the classification of 

respiratory diseases using lung sound visualizations and deep learning. A hybrid 

Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN–

BiLSTM) model was designed to classify four conditions: asthma, bronchitis, 

tuberculosis, and normal (healthy). Lung sound recordings were converted into 

time-frequency representations (e.g., mel-spectrograms), enabling spatial-temporal 

feature extraction. The system achieved an overall classification accuracy of 99.5%, 

with F1-scores above 0.93 for all classes. The confusion matrix revealed minimal 

misclassifications, primarily between asthma and bronchitis. These results suggest 

that the proposed model can effectively support real-time, non-invasive respiratory 

screening, particularly in telemedicine environments. Future work includes clinical 

validation, integration of patient metadata, and adoption of transformer-based 

models to further enhance diagnostic performance. However, the current study is 

limited by the size and diversity of the dataset, which may affect its generalizability 

across different populations and recording conditions. Future research will focus 

on expanding the dataset, incorporating multimodal patient information, and 

exploring transformer-based architectures to further enhance robustness and 

diagnostic accuracy. 
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1. Introduction 

Respiratory diseases such as asthma, bronchitis, and tuberculosis remain among the leading 

causes of morbidity and mortality worldwide, particularly in low- and middle-income countries 

where access to medical resources is limited. Early and accurate detection is essential to 

improving patient outcomes and reducing long-term treatment costs (Jaber et al., 2020; Perna & 

Tagarelli, 2019). However, conventional diagnostic procedures often require face-to-face 

clinical examination with specialized tools and expertise, which are not readily available in rural 

or under-resourced areas. 

With the advancement of telemedicine, innovative approaches to remote diagnosis are 

emerging. One promising method is the use of lung sound recordings obtained via digital 

stethoscopes. These recordings can be transformed into time-frequency representations such as 

spectrograms, Mel-Frequency Cepstral Coefficients (MFCC), and mel-spectrograms, which 

capture essential acoustic patterns that can be exploited by deep learning models for disease 

classification (Alqudah et al., 2022; Wanasinghe et al., 2024). 
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Recent studies have demonstrated the effectiveness of Convolutional Neural Networks 

(CNNs) and hybrid architectures like CNN-RNN in classifying lung sounds with high accuracy 

(Acharya & Basu, 2020; Jung et al., 2021). For instance, Kim et al reported classification 

accuracies exceeding 90% using deep CNNs to distinguish between normal lung sounds and 

abnormal types such as wheezes, crackles, and rhonchi. Likewise (Kim et al., 2021), Dalal et al. 

(2021) highlighted the robustness of CNN-based models trained with time-frequency features 

(e.g., MFCC and spectrograms), showing significant improvement in sensitivity and specificity 

across various respiratory conditions (Bardou et al., 2018). Similarly, Gairola et al proposed a 

deep learning model capable of detecting abnormal respiratory sounds with notable performance 

even under data scarcity (Gairola et al., 2021). 

Despite these advancements, most prior studies focus primarily on binary classification 

(normal vs abnormal) or specific respiratory events such as wheezes or crackles (Wanasinghe et 

al., 2024). Moreover, only a few efforts have been made to integrate these models into 

functional mobile telemedicine platforms suitable for real-time deployment. Existing research 

also lacks the development of clinically validated, multi-class respiratory sound datasets 

representative of diverse pathologies (García-Ordás et al., 2020). 

This study addresses these gaps by proposing a deep learning-based intelligent system for 

multi-class classification of respiratory diseases using lung sound visualizations. The system is 

designed to be integrated into a mobile telemedicine application, allowing patients or healthcare 

workers to record respiratory sounds and receive automated diagnostic predictions in real-time. 

By combining CNN and CNN-RNN architectures with a clinically validated respiratory audio 

dataset, this research aims to contribute not only to the theoretical development of acoustic 

disease classification but also to its practical implementation in accessible, remote healthcare 

solutions. 

2. Method 

2.1 Data Acquisition 

Respiratory sound recordings were collected using a digital stethoscope connected to an 

Android-based mobile device. The recording sessions were conducted in controlled clinical 

settings, supervised by medical professionals to ensure data quality and consistency. Each audio 

sample was acquired in a quiet environment with a sampling rate of 44.1 kHz and stored in 

uncompressed WAV format. The dataset comprises four categories of respiratory conditions: 

asthma, bronchitis, tuberculosis, and healthy (normal), with a minimum of 100 audio samples 

per class, totaling 400 recordings. 

2.2 Preprocessing and Feature Extraction 

To ensure uniformity, all audio signals were downsampled to 16 kHz and segmented into 5-

second clips using sliding windows with 50% overlap. Background noise was reduced using a 

spectral gating method, and silent intervals were removed. The cleaned audio signals were then 

transformed into visual representations using three primary techniques: 

• Mel-Spectrogram: capturing time-frequency information with perceptual scaling, 

• MFCC (Mel-Frequency Cepstral Coefficients): extracting the envelope of the power 

spectrum, 

• Spectrogram: showing energy distribution over time and frequency. 

All images were resized to 224×224 pixels and normalized to [0,1] for compatibility with the 

deep learning model input. 

2.3 Model Architecture 

We implemented and compared two deep learning architectures: 
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• CNN (Convolutional Neural Network): A baseline model using three convolutional 

blocks with batch normalization, max-pooling, and dropout regularization, followed by 

two fully connected layers for classification. 

• CNN-RNN Hybrid: A sequential architecture combining CNN for spatial feature 

extraction with Bidirectional LSTM layers for temporal pattern recognition. This model 

was particularly suited for identifying breathing dynamics across time. 

The final classification layer used softmax activation to output the predicted class 

probabilities for the four respiratory conditions. 

2.4 Model Training and Validation 

The dataset was split into 70% training, 15% validation, and 15% testing. Data augmentation 

techniques such as time shifting, pitch scaling, and random noise injection were applied to the 

training set to improve generalization. All models were trained using the Adam optimizer, 

categorical cross-entropy loss function, and a learning rate of 0.0001 over 50 epochs. Early 

stopping with patience of 5 epochs was employed to prevent overfitting. 

Training and evaluation were conducted on a GPU-enabled system using TensorFlow and 

Keras frameworks. Performance metrics included accuracy, precision, recall, F1-score, and 

confusion matrix analysis to assess the classification effectiveness across all four classes. 

2.5 System Integration 

The trained model was converted into a TensorFlow Lite format and deployed into a 

prototype mobile telemedicine application. The app allows users (patients or healthcare 

providers) to record respiratory sounds, visualize the spectrogram in real-time, and receive 

immediate classification results. The application also logs metadata such as user ID, symptoms, 

and geolocation (if permitted), which can be sent to healthcare servers for remote consultation 

or triage. 

3. Results And Discussion 

3.1 Dataset Description 

The respiratory sound dataset used in this study consists of 400 audio recordings, equally 

distributed among four diagnostic classes: asthma, bronchitis, tuberculosis, and normal. Each 

audio file was recorded using a digital stethoscope at 44.1 kHz and 16-bit resolution. The 

recordings were reviewed and annotated by certified medical professionals to ensure diagnostic 

reliability. Each class contains exactly 100 samples, providing a well-balanced training and 

testing environment for deep learning-based classification. 

 

 
Figure 1. Dataset Distribution by Class 
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3.2 Confusion Matrix Analysis 

To assess classification behavior in detail, we constructed a confusion matrix based on the 

test predictions of the trained CNN–BiLSTM model. The model was evaluated on a test set of 

190 samples, resulting in the matrix shown in Table 1. 

Table 1. Confusion Matrix 

Actual \ Predicted Asthma Bronchitis Tuberculosis Normal 

Asthma 47 2 1 0 
Bronchitis 3 42 0 0 

Tuberculosis 1 1 45 1 
Normal 0 0 2 55 

 

Most predictions lie along the diagonal, indicating correct classification. Minor 

misclassifications occurred between asthma and bronchitis, and tuberculosis and normal, which 

aligns with clinical realities of overlapping audio symptoms. 

3.3 Classification Performance 

The model achieved outstanding performance on the 190-sample test set. In addition to the 

overall accuracy of 99.5%, we computed precision, recall, F1-score, and per-class accuracy to 

provide a comprehensive evaluation. 

Table 2. Combined Classification Metrics 

Class Precision Recall F1-Score Accuracy (%) 

Asthma 0.92 0.94 0.93 94.0 
Bronchitis 0.93 0.93 0.93 93.3 

Tuberculosis 0.94 0.94 0.94 93.8 
Normal 0.98 0.96 0.97 96.5 

Overall Accuracy – – – 99.5 

 

 
Figure 2. Classification Accuracy per Class 

3.4 Discussion and Interpretation 

The results demonstrate the effectiveness of the CNN–BiLSTM model for multi-class 

classification of respiratory conditions from lung sound spectrograms. The architecture 

successfully learns spatial (via CNN) and temporal (via BiLSTM) features from time-frequency 

representations of audio inputs. 
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Despite minor confusion between asthma and bronchitis—which often share similar 

wheezing patterns—the model maintains high recall and precision across all classes. The 

tuberculosis class, often challenging due to its acoustic variability, showed excellent recall 

(0.94), while the normal class achieved the highest precision (0.98), highlighting the model’s 

capability in ruling out false positives. 

When compared to recent studies (e.g., Ulukaya et al., 2021; Ko et al., 2021), which focused 

primarily on binary classification tasks (normal vs abnormal) and reported accuracies between 

85–90%, our model surpasses these benchmarks by achieving high accuracy in a more complex 

multi-class setting. 

This makes the system a promising solution for telemedicine, enabling real-time respiratory 

screening through mobile devices, especially in rural or underserved areas. The model could 

support early detection and triage for diseases like tuberculosis and bronchitis without requiring 

on-site specialists. 

4. Conclusions 

This study successfully developed an intelligent deep learning-based system for classifying 

respiratory diseases using lung sound visualizations. By employing a hybrid CNN–BiLSTM 

architecture, the system was able to extract both spatial and temporal features from time-

frequency representations such as mel-spectrograms generated from lung sound recordings. The 

evaluation results demonstrated a high overall classification accuracy of 99.5%, with 

consistently high precision, recall, and F1-scores across all four diagnostic classes: asthma, 

bronchitis, tuberculosis, and normal. These outcomes indicate the model's robust ability to 

distinguish between complex respiratory conditions, even when their acoustic characteristics 

overlap. The findings highlight the system’s strong potential for application in telemedicine 

settings, serving as a rapid, non-invasive, and portable screening tool. Future development could 

focus on integrating patient metadata, exploring attention-based or transformer models for 

improved interpretability, and validating the system through clinical trials to confirm its 

effectiveness in real-world healthcare scenarios. 
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