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Abstract

The rapid growth of Indonesian-language digital texts often involves figurative
language, yet large-scale identification remains challenging due to class imbalance.
This study introduces a comparative evaluation of Naive Bayes and K-Nearest
Neighbor (KNN) algorithms for classifying figurative language styles in Indonesian
texts, while examining the effect of SMOTE data balancing and hyperparameter
tuning. Using 5,155 original samples and 6,240 balanced samples, models were
tested under four scenarios (with/without SMOTE and tuning) on an 80:20 split.
Results indicate that Naive Bayes maintained stable performance with an accuracy
of 93.19%, whereas KNN reached its best accuracy of 93.43% after SMOTE and
tuning. These findings demonstrate that data balancing and parameter optimization
significantly enhance classification performance, providing a methodological
contribution to computational linguistics and advancing automatic figurative
language detection in Indonesian texts.
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1. Introduction

In today’s digital era, Indonesian-language textual data is proliferating rapidly across social
media, online news, blogs, and digital documents, creating new challenges in information
management and comprehension. Natural Language Processing (NLP), a branch of artificial
intelligence, plays a crucial role in addressing these challenges by enabling computers to
automatically process, analyze, and interpret human language (Busiarli et al., 2016). The
increasing demand for Indonesian NLP systems stems from the massive growth of textual data,
which often contains complex linguistic features such as figurative language that complicate
semantic analysis.

Figurative language—including personification, metaphor, hyperbole, euphemism, and
irony—serves to enrich meaning and strengthen expression in communication. In Indonesian,
where cultural and contextual nuances are central to language use, figurative expressions are
pervasive and carry significant implications for sentiment analysis, opinion mining, and
adaptive learning systems. However, despite its importance, research on automatic figurative
language classification in Indonesian texts remains scarce. Most existing studies focus on
general text classification or sentiment analysis, without specifically addressing the
identification of figurative styles. This gap highlights the need for more systematic approaches
to figurative language processing in Indonesian.
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Among the commonly used algorithms, Naive Bayes and K-Nearest Neighbor (KNN) offer
contrasting advantages. Naive Bayes relies on probabilistic word occurrences and is recognized
for efficiency and reliable performance even with limited training data (Dewi et al., 2021).
Conversely, KNN classifies text based on similarity to labeled data, making it capable of
capturing non-linear patterns and more robust to noise (Hendriyanto & Sari, 2022). While these
algorithms have been explored in various text mining tasks, no prior study has directly
compared their effectiveness in Indonesian figurative language classification, leaving a
methodological gap in computational linguistics research.

Another challenge lies in imbalanced class distribution, where minority figurative styles are
underrepresented. This imbalance often degrades model accuracy, limiting its applicability in
real-world scenarios. To overcome this, the Synthetic Minority Over-sampling Technique
(SMOTE) is employed to improve class representation, enabling the model to better learn from
underrepresented categories (Sharfina & Ramadhan, 2023). Moreover, hyperparameter tuning is
conducted, as variations in parameter configurations can significantly affect model performance
(Arifadilah, 2023).

This study therefore contributes to the field by (1) providing the first comparative evaluation
of Naive Bayes and KNN for Indonesian figurative language classification, (2) demonstrating
the role of SMOTE in mitigating data imbalance, and (3) showing the effectiveness of
hyperparameter tuning in enhancing accuracy. By filling these gaps, the research not only
strengthens Indonesian NLP resources but also offers methodological insights that can be
extended to other low-resource languages facing similar challenges.

2. Method

This study employs a quantitative approach using machine learning—based text classification
methods. Two supervised learning algorithms, Naive Bayes and K-Nearest Neighbor (KNN),
were implemented to classify figurative language styles in Indonesian texts. The overall
research process includes data collection, preprocessing with Natural Language Processing
(NLP) techniques, classification using Naive Bayes and KNN, data balancing with SMOTE,
hyperparameter tuning, and model evaluation. The evaluation was conducted using accuracy,
precision, recall, and Fl-score to identify the most effective classification model. Figure 1

llustrates the research flow.
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Figure 1. Flowchart of the Research Process
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2.1 Data Collection

The dataset was compiled from various sources, including literary works and texts
generated with the assistance of the ChatGPT artificial intelligence model. To ensure validity
and reliability, all sentences were verified by Indonesian language experts. The final dataset
contained 5,155 samples, categorized into five figurative language styles: personification,
metaphor, hyperbole, euphemism, and irony (see Table 1).

Tabel 1. Sample Count per Figurative Language Style

No Language Style Sample Count
1 Personification 1247

2 Metaphor 1227

3 Hyperbole 1248

4 Euphemism 636

5 Trony 797

The class distribution was imbalanced, particularly for euphemism and irony. To address this,
the Synthetic Minority Oversampling Technique (SMOTE) was later applied, increasing the
dataset to 6,240 samples with more balanced representation across classes. Both the original and
the SMOTE-augmented datasets were split into 80% training data and 20% testing data for
model training and evaluation.

2.2 Data Preprocessing

Data preprocessing is a crucial step in Natural Language Processing (NLP) to transform raw
text into a clean and structured format suitable for machine learning. In this study, preprocessing
was conducted through several stages to ensure that the data was consistent, noise-free, and
representative of linguistic patterns relevant to figurative language classification. The stages are
explained in detail as follows:

2.2.1 Case Folding

All characters in the text were converted into lowercase letters. For example, words such as
“SAYA” and “saya” were treated as the same token. This step reduced redundancy caused by
variations in letter case and ensured uniform representation of words in the dataset. Without
case folding, the system might interpret the same word in different cases as separate features,
which would unnecessarily increase the feature space.

2.2.2 Cleansing Data

In this step, non-linguistic elements such as punctuation marks, numbers, HTML tags, and
special characters were removed from the text. For instance, a sentence like “Dia berlari!!!”
was converted to “dia berlari”. This step aimed to eliminate irrelevant noise that does not
contribute to semantic meaning. By focusing only on valid words, data cleansing improved the
quality of features extracted for classification and reduced the possibility of models being biased
by meaningless symbols.

2.2.3 Stopwords Removal

Stopwords are words that frequently occur in a language but carry minimal semantic weight
in text analysis, such as “dan,” “atau,” “yang,” “adalah,” in Indonesian or “and,” “is,
in English. These words were removed because they tend to dominate the dataset without
providing discriminative information for figurative language classification. For example, the
phrase “dia adalah cahaya” would still preserve its figurative meaning after removing the word
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“adalah.” This step helped reduce dimensionality and allowed the algorithms to focus on more
informative terms that represent figurative expressions.

2.2.4 TF-IDF Preparation

Before weighting, sentences were segmented into individual tokens (words). For example,
the sentence “Hatinya sekeras batu” would be tokenized into [hatinya, sekeras, batu].
Tokenization enabled the representation of each word as a basic analysis unit, which is essential
for machine learning—based classification.

2.2.5 TF-IDF Weighting

After tokenization and stopwords removal, features were transformed into numerical vectors
using Term Frequency—Inverse Document Frequency (TF-IDF) weighting (Saleh, 2015). TF-
IDF calculates the importance of a word in a document relative to its frequency across the entire
dataset. Words that appear frequently in one class but rarely across others (e.g., “batu” in
metaphoric contexts) received higher weights. Conversely, very common words across all
classes (e.g., “dia”) received lower weights. This ensured that the classification algorithms
focused on terms that were distinctive for identifying figurative language styles.

Through these preprocessing steps, the dataset was converted into a structured representation
where each sentence was transformed into a weighted vector of relevant tokens. This process
significantly enhanced the ability of the machine learning models to recognize patterns
associated with different figurative language styles.

2.3 Classification

The classification process in this study was carried out through several steps. First, if the
experiment involved hyperparameter tuning, the tuning process was conducted beforehand to
determine the best parameters, such as the alpha value in Naive Bayes and the number of
neighbors (k) in KNN, using the Grid Search method. Once the optimal parameters were
obtained or if tuning was not applied, the next step was to process the dataset according to the
selected approach. If SMOTE was used, the data was balanced first before being split into
training and testing sets. If SMOTE was not applied, the dataset was directly split without
modifying the distribution of samples across classes.

After the data was prepared, the classification algorithms, namely Naive Bayes and K
Nearest Neighbor (KNN), were implemented. Naive Bayes calculates the probability of words
in a document based on their frequency of occurrence (Annur, 2018), while KNN determines
the class based on the majority vote of the k nearest neighbors (Putri et al., 2023). In addition,
Term Frequency Inverse Document Frequency (TF-IDF) was used to assign weights to words
based on their relevance to specific language styles in the context of classification tasks (Saleh,
2015).

To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was
applied to generate synthetic samples for the minority class, resulting in a more balanced data
distribution (Fatiya, 2021). This technique solves the problem by generating synthetic data for
the minority class so that it becomes balanced with the majority class (Farizki, 2023). The
classification results were then evaluated using accuracy, precision, recall, and F1 score metrics.
Each combination of approach (SMOTE or non-SMOTE, Naive Bayes or KNN, tuning or non-
tuning) was analyzed to determine the best-performing model. This study involved eight models
based on different method combinations.
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Figure 2. Classification Process

2.4 Data Balancing with SMOTE

Since the dataset was imbalanced, SMOTE was applied to generate synthetic data points for
underrepresented classes. This approach produces new samples by interpolating between
existing minority instances, thereby balancing the dataset (Fatiya, 2021; Farizki, 2023). After
applying SMOTE, the dataset expanded from 5,155 to 6,240 samples, which reduced bias
toward majority classes and improved model learning.

2.5 Model Evaluation

All models were evaluated using accuracy, precision, recall, and F1-score. These metrics
enabled a comprehensive assessment of classification performance beyond overall accuracy,
particularly for imbalanced data. The comparative evaluation of Naive Bayes and KNN across
all experimental conditions allowed identification of the best-performing algorithm and
demonstrated the impact of SMOTE and hyperparameter tuning on model effectiveness.

3. Results And Discussion

This study compared eight experimental models combining Naive Bayes and KNN with
different conditions of SMOTE and hyperparameter tuning. Model performance was evaluated
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using accuracy, precision, recall, F1-score, and confusion matrices to provide both quantitative
measurement and qualitative insights into classification stability.

3.1 Data Collection Result

A total of 5,155 sentences were collected and categorized into five figurative language styles:
hyperbole, personification, metaphor, irony, and euphemism. Each class contained a different
number of samples, which led to data imbalance. The dataset was then saved in CSV format to
enable further computational processing (Figure 3).

Jumlah Data Masing-masing Gaya Bahasa:

Label

Hiperbola 1248
Personifikasi 1247
Metafora 1227
Ironi 797
Eufemisme 636

Name: count, dtype: int64
Total Data: 5155
Figure 3. Data Collection Result
3.2 Data Processing Result
The dataset underwent preprocessing to ensure quality and consistency. The steps included

case folding, cleansing, stopwords removal, tokenization, and TF-IDF transformation (Saleh,
2015). These processes reduced noise and emphasized distinctive linguistic features necessary
for figurative language classification. The preprocessing output is illustrated in Figure 4.

Hasil Preprocessing
Gaya Bahasa Contoh Kalimat \
Eufemisme Paranormal berkedok agama itu akhirnya dihukum...
Hiperbola Kelelahan ini seperti beban berat yang mengika...
Ironi Saya tahu anda seorang gadis yang paling canti...
Metafora Maling itu mengambil langkah seribu ketika dik...
Personifikasi Angin sore mengalir dengan lembut, membawa aro...

oW @

Case Folding
paranormal berkedok agama itu akhirnya dihukum...
kelelahan ini seperti beban berat yang mengika...
saya tahu anda seorang gadis yang paling canti...
maling itu mengambil langkah seribu ketika dik...

o R @

angin sore mengalir dengan lembut, membawa aro...

Cleansing Data \
paranormal berkedok agama itu akhirnya dihukum...
kelelahan ini seperti beban berat yang mengika...
saya tahu anda seorang gadis yang paling canti...
maling itu mengambil langkah seribu ketika dik...

LI

angin sore mengalir dengan lembut membawa arom...

Stopwords Removal

paranormal berkedok agama dihukum masuk jeruji...
kelelahan beban berat mengikat tubuhku

gadis cantik dunia terhormat

maling mengambil langkah seribu dikejar warga

o e @

angin sore mengalir lembut membawa aroma musim...
Figure 4. Data Processing Result

3.3 Data Splitting

The dataset was partitioned into training and testing subsets using the train_test split
function, with an 80:20 ratio. This split ensured that the majority of data was allocated for
model learning while reserving a smaller portion for unbiased evaluation. To address class
imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied exclusively
to the training set, thereby preventing data leakage from synthetic samples into the test set. This
approach guaranteed that the evaluation phase would reflect the model’s true performance on
unseen, real data. In the original (imbalanced) dataset, the training set consisted of 4,124
samples, while the test set contained 1,031 samples. After applying SMOTE, the training set
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was expanded to 4,992 samples, and the test set to 1,248 samples. Importantly, SMOTE
balanced the dataset by generating synthetic samples for the minority class, ensuring that each
class contained exactly 1,248 samples. This balance mitigates bias during model training and
improves the classifier’s ability to generalize across both majority and minority classes.

Jumlah Data Sebelum SMOTE Jumlah Data Setelah SMOTE

1200 12001

1000 1000 4
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Figure 5. SMOTE Result

The distribution of samples across different scenarios (with and without SMOTE) is
summarized in Table 2, providing a clear comparison of how the dataset changed after
preprocessing.

Tabel 2. Data Distribution for Each Model Testing

Scenario Algorithm Training Testing Total

Data Data Data

1. No SMOTE & No Tuning Naive Bayes 4.124 1.031 5.155
K-nearest
neighbor

2. SMOTE & No Tuning Naive Bayes 4.992 1.248 6.240
K-nearest
neighbor

3. No SMOTE & Tuning Naive Bayes 4.124 1.031 5.155
K-nearest
neighbor

4. SMOTE & Tuning Naive Bayes 4.992 1.248 6.240
K-nearest
neighbor

3.4 Model Evaluation Results

Model evaluation was conducted by comparing Naive Bayes and KNN under four
conditions: without SMOTE and tuning, with SMOTE without tuning, without SMOTE with
tuning, and with both SMOTE and tuning. The testing was performed on 5,155 samples without
SMOTE and 6,240 samples with SMOTE, classified into five language styles: euphemism,
hyperbole, irony, metaphor, and personification. The evaluation results can be seen in Table 4.
A bar chart is used to compare the accuracy of each model under different conditions and their
correct predictions.
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Tabel 3. Model Evaluation Results

Scenario Naive Bayes KNN
P R F A (%) P R F  A®%)
No SMOTE & No 0.88 0.87 087 8729 0.77 0.79 0.80 77.11
Tuning

SMOTE & No Tuning 092 092 092 9167 084 0.84 0.84 83.97
No SMOTE & Tuning 0.89 091 090 90.11 0.79 0.79 0.79 79.24
SMOTE & Tuning 093 093 093 93.19 093 093 093 9343

Explanation:
P : Precision; R : Recall; F : F1-Score; A : Accuracy

Perbandingan Akurasi Naive Bayes dan KNN

93,19%93.43%
91.67% 90.11%

I Naive Bayes
N KNN

801

60

Akurasi (%)

204

Tanpa SMOTE ~ Dengan SMOTE  Tanpa SMOTE  Dengan SMOTE
Tanpa Tuning Tanpa Tuning Dengan Tuning Dengan Tuning
Skenario

Figure 6. Accuracy Comparison Results of Naive Bayes and KNN in Various Scenarios

Figure.6 shows the accuracy comparison between the Naive Bayes and K-Nearest Neighbor
(KNN) algorithms across four different scenarios. In the initial condition with no SMOTE and
no tuning, Naive Bayes achieved an accuracy of 87.29%, significantly outperforming KNN,
which only reached 77.11%. This indicates that Naive Bayes performs more consistently when
handling imbalanced data, whereas KNN tends to be less optimal in such cases.

After applying SMOTE, both algorithms saw an increase in accuracy. Naive Bayes
improved to 91.67%, while KNN rose to 83.97%. Meanwhile, in the condition without SMOTE
but with tuning, Naive Bayes reached 90.11% accuracy, and KNN increased to 79.24%. Tuning
had a positive effect on both models’ performance, but Naive Bayes still outperformed KNN in
these scenarios, demonstrating its robustness across different conditions.

In the best-performing condition, where both SMOTE and tuning were applied, KNN finally
surpassed Naive Bayes with an accuracy of 93.43%, compared to 93.19%. This is the only
scenario where KNN showed higher performance, indicating that this algorithm heavily depends
on balanced data distribution and optimal parameter selection.
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Perbandingan Jumlah Prediksi Benar Naive Bayes dan KNN
1200 1144 1163 1166

I Naive Bayes
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795 817
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skenario

Figure 7. Correct Predictions from the Confusion Matrix Across Different Conditions

Figure 7 illustrates the number of correct predictions produced by each model in various
testing scenarios. In the initial condition without SMOTE and without tuning, out of a total of
1,031 test samples, Naive Bayes achieved 900 correct predictions, while KNN reached only
795. This suggests that Naive Bayes is more reliable under basic conditions, while KNN shows
lower accuracy and a higher rate of misclassification.

After applying SMOTE, both algorithms experienced a significant improvement. Naive
Bayes recorded 1,144 correct predictions out of 1,248 test samples an increase of 244 compared
to the initial condition. KNN also showed a major performance boost with 1,048 correct
predictions, an increase of 253. This indicates that SMOTE is highly effective in improving
class distribution, especially for KNN, which was more affected by data imbalance.

In the scenario without SMOTE but with tuning, the number of correct predictions increased
but not as much as with SMOTE. Naive Bayes rose to 929, while KNN reached 817. The best
results occurred when SMOTE and tuning were applied together: Naive Bayes achieved 1,163
correct predictions, and KNN slightly surpassed it with 1,166. These results show that KNN's
performance heavily relies on data processing and parameter tuning, whereas Naive Bayes
maintains consistent and stable performance across different conditions.

This study also presents several limitations that should be acknowledged. First, part of the
dataset was generated with the assistance of ChatGPT and subsequently verified by language
experts; however, data validation could be strengthened by conducting inter-annotator
agreement or reliability checks among multiple experts. Second, the analysis mainly
emphasized model accuracy without addressing linguistic challenges inherent in Indonesian
figurative language, such as metaphorical ambiguity or irony, which could enrich the
discussion. Third, the explanation of hyperparameter tuning remains general; specific
configurations, such as the smoothing (o)) value in Naive Bayes and the choice of £ and distance
metrics in KNN, should be reported in detail to ensure reproducibility. Fourth, the benchmark
was limited to only two algorithms (Naive Bayes and KNN), whereas incorporating additional
models such as SVM or Random Forest would provide more competitive insights. Lastly, while
the tables and figures clearly present performance results, the analysis remains descriptive;
further discussion is needed to explain why Naive Bayes tends to be more stable on imbalanced
data, while KNN benefits more significantly from SMOTE and hyperparameter tuning.

4. Conclusions

This study evaluated the performance of Naive Bayes and K-Nearest Neighbor (KNN) in
classifying Indonesian figurative language styles under four experimental conditions: without
SMOTE or tuning, with SMOTE only, with tuning only, and with both SMOTE and tuning. The
comparative design was intended to assess how class balancing through SMOTE and parameter
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optimization through tuning influenced the effectiveness of both algorithms. By testing these
scenarios systematically, the study was able to capture not only the overall accuracy of the
models but also their stability across different data distributions and preprocessing strategies.

The results indicate that Naive Bayes consistently achieved strong performance across most
conditions, reaching up to 93.19% accuracy. This shows that Naive Bayes, as a probabilistic
classifier, is relatively robust to class imbalance and does not rely heavily on additional
preprocessing. On the other hand, KNN demonstrated weaker results in baseline conditions but
achieved the highest overall accuracy of 93.43% when both SMOTE and tuning were applied.
This confirms that KNN is highly sensitive to data distribution and parameter settings,
benefiting significantly from balanced training data and optimized hyperparameters. Moreover,
SMOTE played a critical role in improving minority class recognition, with its impact being
more pronounced on KNN than on Naive Bayes.

These findings underscore the importance of data balancing and parameter optimization in
figurative language classification for Indonesian texts. The study contributes by providing a
comparative benchmark between probabilistic (Naive Bayes) and instance-based (KNN)
approaches under different preprocessing conditions, offering valuable insights for researchers
and practitioners working with imbalanced datasets. For future research, it is recommended to
explore additional machine learning and deep learning models such as Support Vector Machines
(SVM), Random Forests, or Transformer-based architectures (e.g., BERT, IndoBERT), which
have shown strong performance in recent NLP studies (Devlin et al., 2019; Ranasinghe &
Zampieri, 2021). Furthermore, the integration of word embeddings and contextualized language
models could further enhance the detection of figurative language in Indonesian and other low-
resource languages, paving the way for more accurate and context-aware classification systems.

This study is limited by the nature of its dataset, the lack of deeper linguistic analysis, the
general description of hyperparameter tuning, and the restricted algorithm benchmark. Future
research should address these issues by improving dataset validation (e.g., inter-annotator
agreement), incorporating linguistic perspectives in figurative language analysis, reporting
detailed hyperparameter configurations for reproducibility, and extending the benchmark to
include algorithms such as SVM, Random Forest, or deep learning methods.
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