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Abstract 

 
The rapid growth of Indonesian-language digital texts often involves figurative 

language, yet large-scale identification remains challenging due to class imbalance. 

This study introduces a comparative evaluation of Naïve Bayes and K-Nearest 

Neighbor (KNN) algorithms for classifying figurative language styles in Indonesian 

texts, while examining the effect of SMOTE data balancing and hyperparameter 

tuning. Using 5,155 original samples and 6,240 balanced samples, models were 

tested under four scenarios (with/without SMOTE and tuning) on an 80:20 split. 

Results indicate that Naïve Bayes maintained stable performance with an accuracy 

of 93.19%, whereas KNN reached its best accuracy of 93.43% after SMOTE and 

tuning. These findings demonstrate that data balancing and parameter optimization 

significantly enhance classification performance, providing a methodological 

contribution to computational linguistics and advancing automatic figurative 

language detection in Indonesian texts. 
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1. Introduction 

In today’s digital era, Indonesian-language textual data is proliferating rapidly across social 

media, online news, blogs, and digital documents, creating new challenges in information 

management and comprehension. Natural Language Processing (NLP), a branch of artificial 

intelligence, plays a crucial role in addressing these challenges by enabling computers to 

automatically process, analyze, and interpret human language (Busiarli et al., 2016). The 

increasing demand for Indonesian NLP systems stems from the massive growth of textual data, 

which often contains complex linguistic features such as figurative language that complicate 

semantic analysis. 

Figurative language—including personification, metaphor, hyperbole, euphemism, and 

irony—serves to enrich meaning and strengthen expression in communication. In Indonesian, 

where cultural and contextual nuances are central to language use, figurative expressions are 

pervasive and carry significant implications for sentiment analysis, opinion mining, and 

adaptive learning systems. However, despite its importance, research on automatic figurative 

language classification in Indonesian texts remains scarce. Most existing studies focus on 

general text classification or sentiment analysis, without specifically addressing the 

identification of figurative styles. This gap highlights the need for more systematic approaches 

to figurative language processing in Indonesian. 
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Among the commonly used algorithms, Naïve Bayes and K-Nearest Neighbor (KNN) offer 

contrasting advantages. Naïve Bayes relies on probabilistic word occurrences and is recognized 

for efficiency and reliable performance even with limited training data (Dewi et al., 2021). 

Conversely, KNN classifies text based on similarity to labeled data, making it capable of 

capturing non-linear patterns and more robust to noise (Hendriyanto & Sari, 2022). While these 

algorithms have been explored in various text mining tasks, no prior study has directly 

compared their effectiveness in Indonesian figurative language classification, leaving a 

methodological gap in computational linguistics research. 

Another challenge lies in imbalanced class distribution, where minority figurative styles are 

underrepresented. This imbalance often degrades model accuracy, limiting its applicability in 

real-world scenarios. To overcome this, the Synthetic Minority Over-sampling Technique 

(SMOTE) is employed to improve class representation, enabling the model to better learn from 

underrepresented categories (Sharfina & Ramadhan, 2023). Moreover, hyperparameter tuning is 

conducted, as variations in parameter configurations can significantly affect model performance 

(Arifadilah, 2023). 

This study therefore contributes to the field by (1) providing the first comparative evaluation 

of Naïve Bayes and KNN for Indonesian figurative language classification, (2) demonstrating 

the role of SMOTE in mitigating data imbalance, and (3) showing the effectiveness of 

hyperparameter tuning in enhancing accuracy. By filling these gaps, the research not only 

strengthens Indonesian NLP resources but also offers methodological insights that can be 

extended to other low-resource languages facing similar challenges. 

2. Method 

This study employs a quantitative approach using machine learning–based text classification 

methods. Two supervised learning algorithms, Naïve Bayes and K-Nearest Neighbor (KNN), 

were implemented to classify figurative language styles in Indonesian texts. The overall 

research process includes data collection, preprocessing with Natural Language Processing 

(NLP) techniques, classification using Naïve Bayes and KNN, data balancing with SMOTE, 

hyperparameter tuning, and model evaluation. The evaluation was conducted using accuracy, 

precision, recall, and F1-score to identify the most effective classification model. Figure 1 

illustrates the research flow. 

 
Figure 1. Flowchart of the Research Process 
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2.1 Data Collection 

The dataset was compiled from various sources, including literary works and texts 

generated with the assistance of the ChatGPT artificial intelligence model. To ensure validity 

and reliability, all sentences were verified by Indonesian language experts. The final dataset 

contained 5,155 samples, categorized into five figurative language styles: personification, 

metaphor, hyperbole, euphemism, and irony (see Table 1). 

 

Tabel 1. Sample Count per Figurative Language Style 

 

No Language Style Sample Count 

1 Personification 1247 

2 Metaphor 1227 

3 Hyperbole 1248 

4 Euphemism 636 

5 Irony 797 

   The class distribution was imbalanced, particularly for euphemism and irony. To address this, 

the Synthetic Minority Oversampling Technique (SMOTE) was later applied, increasing the 

dataset to 6,240 samples with more balanced representation across classes. Both the original and 

the SMOTE-augmented datasets were split into 80% training data and 20% testing data for 

model training and evaluation. 

2.2 Data Preprocessing 

Data preprocessing is a crucial step in Natural Language Processing (NLP) to transform raw 

text into a clean and structured format suitable for machine learning. In this study, preprocessing 

was conducted through several stages to ensure that the data was consistent, noise-free, and 

representative of linguistic patterns relevant to figurative language classification. The stages are 

explained in detail as follows: 

 

2.2.1 Case Folding 

     All characters in the text were converted into lowercase letters. For example, words such as 

“SAYA” and “saya” were treated as the same token. This step reduced redundancy caused by 

variations in letter case and ensured uniform representation of words in the dataset. Without 

case folding, the system might interpret the same word in different cases as separate features, 

which would unnecessarily increase the feature space. 

 

2.2.2 Cleansing Data 

     In this step, non-linguistic elements such as punctuation marks, numbers, HTML tags, and 

special characters were removed from the text. For instance, a sentence like “Dia berlari!!!” 

was converted to “dia berlari”. This step aimed to eliminate irrelevant noise that does not 

contribute to semantic meaning. By focusing only on valid words, data cleansing improved the 

quality of features extracted for classification and reduced the possibility of models being biased 

by meaningless symbols. 

 

2.2.3 Stopwords Removal 

      Stopwords are words that frequently occur in a language but carry minimal semantic weight 

in text analysis, such as “dan,” “atau,” “yang,” “adalah,” in Indonesian or “and,” “is,” “or” 

in English. These words were removed because they tend to dominate the dataset without 

providing discriminative information for figurative language classification. For example, the 

phrase “dia adalah cahaya” would still preserve its figurative meaning after removing the word 
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“adalah.” This step helped reduce dimensionality and allowed the algorithms to focus on more 

informative terms that represent figurative expressions. 

 

2.2.4 TF-IDF Preparation 

Before weighting, sentences were segmented into individual tokens (words). For example, 

the sentence “Hatinya sekeras batu” would be tokenized into [hatinya, sekeras, batu]. 

Tokenization enabled the representation of each word as a basic analysis unit, which is essential 

for machine learning–based classification. 

 

2.2.5 TF-IDF Weighting 

After tokenization and stopwords removal, features were transformed into numerical vectors 

using Term Frequency–Inverse Document Frequency (TF-IDF) weighting (Saleh, 2015). TF-

IDF calculates the importance of a word in a document relative to its frequency across the entire 

dataset. Words that appear frequently in one class but rarely across others (e.g., “batu” in 

metaphoric contexts) received higher weights. Conversely, very common words across all 

classes (e.g., “dia”) received lower weights. This ensured that the classification algorithms 

focused on terms that were distinctive for identifying figurative language styles. 

 

Through these preprocessing steps, the dataset was converted into a structured representation 

where each sentence was transformed into a weighted vector of relevant tokens. This process 

significantly enhanced the ability of the machine learning models to recognize patterns 

associated with different figurative language styles. 

 

2.3 Classification 

      The classification process in this study was carried out through several steps. First, if the 

experiment involved hyperparameter tuning, the tuning process was conducted beforehand to 

determine the best parameters, such as the alpha value in Naive Bayes and the number of 

neighbors (k) in KNN, using the Grid Search method. Once the optimal parameters were 

obtained or if tuning was not applied, the next step was to process the dataset according to the 

selected approach. If SMOTE was used, the data was balanced first before being split into 

training and testing sets. If SMOTE was not applied, the dataset was directly split without 

modifying the distribution of samples across classes. 

      After the data was prepared, the classification algorithms, namely Naive Bayes and K 

Nearest Neighbor (KNN), were implemented. Naive Bayes calculates the probability of words 

in a document based on their frequency of occurrence (Annur, 2018), while KNN determines 

the class based on the majority vote of the k nearest neighbors (Putri et al., 2023). In addition, 

Term Frequency Inverse Document Frequency (TF-IDF) was used to assign weights to words 

based on their relevance to specific language styles in the context of classification tasks (Saleh, 

2015). 

      To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was 

applied to generate synthetic samples for the minority class, resulting in a more balanced data 

distribution (Fatiya, 2021). This technique solves the problem by generating synthetic data for 

the minority class so that it becomes balanced with the majority class (Farizki, 2023). The 

classification results were then evaluated using accuracy, precision, recall, and F1 score metrics. 

Each combination of approach (SMOTE or non-SMOTE, Naive Bayes or KNN, tuning or non-

tuning) was analyzed to determine the best-performing model. This study involved eight models 

based on different method combinations. 
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Figure 2. Classification Process 

 

 

2.4 Data Balancing with SMOTE 

Since the dataset was imbalanced, SMOTE was applied to generate synthetic data points for 

underrepresented classes. This approach produces new samples by interpolating between 

existing minority instances, thereby balancing the dataset (Fatiya, 2021; Farizki, 2023). After 

applying SMOTE, the dataset expanded from 5,155 to 6,240 samples, which reduced bias 

toward majority classes and improved model learning. 

 

2.5 Model Evaluation 

All models were evaluated using accuracy, precision, recall, and F1-score. These metrics 

enabled a comprehensive assessment of classification performance beyond overall accuracy, 

particularly for imbalanced data. The comparative evaluation of Naïve Bayes and KNN across 

all experimental conditions allowed identification of the best-performing algorithm and 

demonstrated the impact of SMOTE and hyperparameter tuning on model effectiveness. 

 

3. Results And Discussion 

This study compared eight experimental models combining Naïve Bayes and KNN with 

different conditions of SMOTE and hyperparameter tuning. Model performance was evaluated 
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using accuracy, precision, recall, F1-score, and confusion matrices to provide both quantitative 

measurement and qualitative insights into classification stability. 

 

3.1 Data Collection Result 

    A total of 5,155 sentences were collected and categorized into five figurative language styles: 

hyperbole, personification, metaphor, irony, and euphemism. Each class contained a different 

number of samples, which led to data imbalance. The dataset was then saved in CSV format to 

enable further computational processing (Figure 3). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Data Collection Result 

3.2 Data Processing Result 

     The dataset underwent preprocessing to ensure quality and consistency. The steps included 

case folding, cleansing, stopwords removal, tokenization, and TF-IDF transformation (Saleh, 

2015). These processes reduced noise and emphasized distinctive linguistic features necessary 

for figurative language classification. The preprocessing output is illustrated in Figure 4. 

 
Figure 4. Data Processing Result 

3.3 Data Splitting 

     The dataset was partitioned into training and testing subsets using the train_test_split 

function, with an 80:20 ratio. This split ensured that the majority of data was allocated for 

model learning while reserving a smaller portion for unbiased evaluation. To address class 

imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied exclusively 

to the training set, thereby preventing data leakage from synthetic samples into the test set. This 

approach guaranteed that the evaluation phase would reflect the model’s true performance on 

unseen, real data. In the original (imbalanced) dataset, the training set consisted of 4,124 

samples, while the test set contained 1,031 samples. After applying SMOTE, the training set 
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was expanded to 4,992 samples, and the test set to 1,248 samples. Importantly, SMOTE 

balanced the dataset by generating synthetic samples for the minority class, ensuring that each 

class contained exactly 1,248 samples. This balance mitigates bias during model training and 

improves the classifier’s ability to generalize across both majority and minority classes.  

 
Figure 5. SMOTE Result 

 

      The distribution of samples across different scenarios (with and without SMOTE) is 

summarized in Table 2, providing a clear comparison of how the dataset changed after 

preprocessing. 

 

Tabel 2. Data Distribution for Each Model Testing 

 

3.4 Model Evaluation Results 

     Model evaluation was conducted by comparing Naive Bayes and KNN under four 
conditions: without SMOTE and tuning, with SMOTE without tuning, without SMOTE with 
tuning, and with both SMOTE and tuning. The testing was performed on 5,155 samples without 
SMOTE and 6,240 samples with SMOTE, classified into five language styles: euphemism, 
hyperbole, irony, metaphor, and personification. The evaluation results can be seen in Table 4. 
A bar chart is used to compare the accuracy of each model under different conditions and their 
correct predictions. 

 

 

Scenario Algorithm Training 

Data 

Testing 

Data 

Total 

Data 

1. No SMOTE & No Tuning Naive Bayes 4.124 1.031 5.155 

K-nearest 

neighbor 

2. SMOTE & No Tuning Naive Bayes 4.992 1.248 6.240 

K-nearest 

neighbor 

3. No SMOTE & Tuning Naive Bayes 4.124 1.031 5.155 

K-nearest 

neighbor 

4. SMOTE & Tuning Naive Bayes 4.992 1.248 6.240 

K-nearest 

neighbor 
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Tabel 3. Model Evaluation Results 

 

 

Explanation: 

P : Precision; R : Recall; F : F1-Score; A : Accuracy 

 
Figure 6. Accuracy Comparison Results of Naive Bayes and KNN in Various Scenarios 

 

      Figure.6 shows the accuracy comparison between the Naïve Bayes and K-Nearest Neighbor 

(KNN) algorithms across four different scenarios. In the initial condition with no SMOTE and 

no tuning, Naïve Bayes achieved an accuracy of 87.29%, significantly outperforming KNN, 

which only reached 77.11%. This indicates that Naïve Bayes performs more consistently when 

handling imbalanced data, whereas KNN tends to be less optimal in such cases. 

      After applying SMOTE, both algorithms saw an increase in accuracy. Naïve Bayes 

improved to 91.67%, while KNN rose to 83.97%. Meanwhile, in the condition without SMOTE 

but with tuning, Naïve Bayes reached 90.11% accuracy, and KNN increased to 79.24%. Tuning 

had a positive effect on both models’ performance, but Naïve Bayes still outperformed KNN in 

these scenarios, demonstrating its robustness across different conditions. 

      In the best-performing condition, where both SMOTE and tuning were applied, KNN finally 

surpassed Naïve Bayes with an accuracy of 93.43%, compared to 93.19%. This is the only 

scenario where KNN showed higher performance, indicating that this algorithm heavily depends 

on balanced data distribution and optimal parameter selection. 

Scenario Naïve Bayes KNN 

P R F A (%) P R F A (%) 

No SMOTE & No 

Tuning 

0.88 0.87 0.87 87.29 0.77 0.79 0.80 77.11 

SMOTE & No Tuning 0.92 0.92 0.92 91.67 0.84 0.84 0.84 83.97 

No SMOTE & Tuning 0.89 0.91 0.90 90.11 0.79 0.79 0.79 79.24 

SMOTE & Tuning 0.93 0.93 0.93 93.19 0.93 0.93 0.93 93.43 
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Figure 7. Correct Predictions from the Confusion Matrix Across Different Conditions 

 

      Figure 7 illustrates the number of correct predictions produced by each model in various 

testing scenarios. In the initial condition without SMOTE and without tuning, out of a total of 

1,031 test samples, Naïve Bayes achieved 900 correct predictions, while KNN reached only 

795. This suggests that Naïve Bayes is more reliable under basic conditions, while KNN shows 

lower accuracy and a higher rate of misclassification. 

      After applying SMOTE, both algorithms experienced a significant improvement. Naïve 

Bayes recorded 1,144 correct predictions out of 1,248 test samples an increase of 244 compared 

to the initial condition. KNN also showed a major performance boost with 1,048 correct 

predictions, an increase of 253. This indicates that SMOTE is highly effective in improving 

class distribution, especially for KNN, which was more affected by data imbalance. 

      In the scenario without SMOTE but with tuning, the number of correct predictions increased 

but not as much as with SMOTE. Naïve Bayes rose to 929, while KNN reached 817. The best 

results occurred when SMOTE and tuning were applied together: Naïve Bayes achieved 1,163 

correct predictions, and KNN slightly surpassed it with 1,166. These results show that KNN's 

performance heavily relies on data processing and parameter tuning, whereas Naïve Bayes 

maintains consistent and stable performance across different conditions. 

This study also presents several limitations that should be acknowledged. First, part of the 

dataset was generated with the assistance of ChatGPT and subsequently verified by language 

experts; however, data validation could be strengthened by conducting inter-annotator 

agreement or reliability checks among multiple experts. Second, the analysis mainly 

emphasized model accuracy without addressing linguistic challenges inherent in Indonesian 

figurative language, such as metaphorical ambiguity or irony, which could enrich the 

discussion. Third, the explanation of hyperparameter tuning remains general; specific 

configurations, such as the smoothing (α) value in Naïve Bayes and the choice of k and distance 

metrics in KNN, should be reported in detail to ensure reproducibility. Fourth, the benchmark 

was limited to only two algorithms (Naïve Bayes and KNN), whereas incorporating additional 

models such as SVM or Random Forest would provide more competitive insights. Lastly, while 

the tables and figures clearly present performance results, the analysis remains descriptive; 

further discussion is needed to explain why Naïve Bayes tends to be more stable on imbalanced 

data, while KNN benefits more significantly from SMOTE and hyperparameter tuning. 

4. Conclusions 

This study evaluated the performance of Naïve Bayes and K-Nearest Neighbor (KNN) in 

classifying Indonesian figurative language styles under four experimental conditions: without 

SMOTE or tuning, with SMOTE only, with tuning only, and with both SMOTE and tuning. The 

comparative design was intended to assess how class balancing through SMOTE and parameter 
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optimization through tuning influenced the effectiveness of both algorithms. By testing these 

scenarios systematically, the study was able to capture not only the overall accuracy of the 

models but also their stability across different data distributions and preprocessing strategies. 

The results indicate that Naïve Bayes consistently achieved strong performance across most 

conditions, reaching up to 93.19% accuracy. This shows that Naïve Bayes, as a probabilistic 

classifier, is relatively robust to class imbalance and does not rely heavily on additional 

preprocessing. On the other hand, KNN demonstrated weaker results in baseline conditions but 

achieved the highest overall accuracy of 93.43% when both SMOTE and tuning were applied. 

This confirms that KNN is highly sensitive to data distribution and parameter settings, 

benefiting significantly from balanced training data and optimized hyperparameters. Moreover, 

SMOTE played a critical role in improving minority class recognition, with its impact being 

more pronounced on KNN than on Naïve Bayes. 

These findings underscore the importance of data balancing and parameter optimization in 

figurative language classification for Indonesian texts. The study contributes by providing a 

comparative benchmark between probabilistic (Naïve Bayes) and instance-based (KNN) 

approaches under different preprocessing conditions, offering valuable insights for researchers 

and practitioners working with imbalanced datasets. For future research, it is recommended to 

explore additional machine learning and deep learning models such as Support Vector Machines 

(SVM), Random Forests, or Transformer-based architectures (e.g., BERT, IndoBERT), which 

have shown strong performance in recent NLP studies (Devlin et al., 2019; Ranasinghe & 

Zampieri, 2021). Furthermore, the integration of word embeddings and contextualized language 

models could further enhance the detection of figurative language in Indonesian and other low-

resource languages, paving the way for more accurate and context-aware classification systems. 

This study is limited by the nature of its dataset, the lack of deeper linguistic analysis, the 

general description of hyperparameter tuning, and the restricted algorithm benchmark. Future 

research should address these issues by improving dataset validation (e.g., inter-annotator 

agreement), incorporating linguistic perspectives in figurative language analysis, reporting 

detailed hyperparameter configurations for reproducibility, and extending the benchmark to 

include algorithms such as SVM, Random Forest, or deep learning methods. 
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