Time Series Forecasting of Ship Departure Health Inspections for Strengthening Quarantine Surveillance Using the ARIMA Model

  • Yopi Riski Mei Sandra Departemen Kesehatan lingkungan, Fakultas Kesehatan Masyarakat, Universitas Airlangga, Surabaya, Indonesia
  • Mahmudah Mahmudah Departemen Epidemiologi, Biostatistika, Kependudukan dan Promosi Kesehatan Fakultas Kesehatan Masyarakat, Universitas Airlangga, Surabaya, Indonesia
  • Acub Zaenal Amoe Balai Kekarantinaan Kesehatan Kelas I Probolinggo, Probolinggo, Indonesia
  • Jumali Jumali Balai Kekarantinaan Kesehatan Kelas I Probolinggo, Probolinggo, Indonesia
  • M. Abriyanto Balai Kekarantinaan Kesehatan Kelas I Probolinggo, Probolinggo, Indonesia
Keywords: ARIMA, Ship Departure, Inspection, Time Series, Health Quarantine

Abstract

ARIMA (Autoregressive Integrated Moving Average) is a time series analysis method used to evaluate data based on temporal patterns. The number of ship departure inspections conducted by the Probolinggo Class I Health Quarantine Center has shown fluctuations over time. These inspections are part of disease prevention efforts as regulated in the Indonesian Minister of Health Regulation No. 10 of 2023 concerning the Organization and Work Procedures of the Quarantine Technical Implementation Unit. This study aims to forecast the number of ship departure inspections at the Probolinggo Class I Health Quarantine Center. This research employed a non-reactive design using secondary data from 2020 to 2023, sourced from the Health Quarantine Information System (SINKARKES). The ARIMA (2,0,2) model provided the best fit, with good accuracy (MSE 685,277; MAPE 7.311). Forecasting results show an upward trend in ship departure inspections throughout 2024. This increase is highly relevant for public health, as stronger inspection activity supports quarantine surveillance, helps detect potential disease risks early, and improves preparedness against cross-border health threats.

References

Baker, R.E. Et Al. (2022) ‘Infectious Disease In An Era Of Global Change’, Nature Reviews Microbiology, 20(4), Pp. 193–205. Available At: Https://Doi.Org/10.1038/S41579-021-00639-Z.

Diningestu, R.F. And Mahmudah, M. (2024) ‘Analisis Time Series ARIMA Untuk Memprediksi Jumlah Peserta KB Baru Pasca Persalinan Di Jawa Timur’, Media Gizi Kesmas, 13(1), Pp. 85–92. Available At: Https://Doi.Org/10.20473/Mgk.V13i1.2024.85-92.

Hyndman, R.J. (2014) ‘Forecasting: Principles & Practice’, Antimicrobial Agents And Chemotherapy, 58(12), Pp. 7250–7257. Available At: Robjhyndman.Com/Uwa%5Cnhttp://Robjhyndman.Com/Papers/Forecasting-Age-Specific-Breast-Cancer-Mortality-Using-Functional-Data-Models/.

Kemenkes RI (2023) ‘Tentang Organisasi Dan Tata Kerja Unit Pelaksana Teknis Bidang Kekarantinaan Kesehatan’, Menteri Kesehatan Republik Indonesia Peraturan Menteri Kesehatan Republik Indonesia, 69(1216), Pp. 1–4.

Kemenkes RI (2024) ‘Keputusan Menteri Kesehatan Republik Indonesia Nomor: HK 01.07/MENKES2016/2024’, P. 1517.

Nainggolan, R. Et Al. (2024) ‘Proses Penerbitan Dokumen Port Health Quarantine Clearance (PHQC) Kesehatan Kapal Pada Balai Kekarantinaan Kesehatan Kelas I Oleh PT . Tarunacipta Kencana Cabang Dumai Politeknik Adiguna Maritim Indonesia Medan , Indonesia Proses Penerbitan Port Health’, 2(5). Available At: Https://Journal.Arimbi.Or.Id/Index.Php/Maeswara/Article/View/1288/1542.

Nasir, Z., Noreen, D.N. And Shah, S.G. (2023) ‘International Health Regulations: Core Capacities Assessment At Points Of Entry In Pakistan’, International Journal Of Infectious Diseases, 130, P. S122. Available At: Https://Doi.Org/10.1016/J.Ijid.2023.04.302.

Nurfadila, K. And Ilham Aksan (2020) ‘Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler’, Journal Of Mathematics: Theory And Applications, 2(1), Pp. 5–10. Available At: Https://Doi.Org/10.31605/Jomta.V2i1.749.

Presiden RI (2023) ‘Undang-Undang Republik Indonesia Nomor 17 Tahun 2023 Tentang Kesehatan’, Undang-Undang, (187315), Pp. 1–300.

Sarjana, P., Masyarakat, F.K. And Airlangga, U. (2023) ‘Analisis Time Series Untuk Meramalkan Jumlah Penderita Tuberkulosis Dengan Metode Single Expontial Smooting Time Series Analysis To Predict The Number Of Tuberculosis Sufferers Using The Single Exponential Smoothing Method Fakultas Kesehatan Masyarakat , ’, Pp. 240–248.

Song, M. (2025) ‘Time-Series Forecasting For Hospital Resource Management’, (March). Available At: Https://Www.Researchgate.Net/Publication/390729036.

Tasna Yunita (2020) ‘Peramalan Jumlah Penggunaan Kuota Internet Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)’, Journal Of Mathematics: Theory And Applications, 1(2), Pp. 16–22. Available At: Https://Doi.Org/10.31605/Jomta.V2i1.777.

Tatem, A.J., Rogers, D.J. And Hay, S.I. (2006) ‘Global Transport Networks And Infectious Disease Spread’, Advances In Parasitology, 62(January), Pp. 293–343. Available At: Https://Doi.Org/10.1016/S0065-308X(05)62009-X.

Wilson, G.T. (2016) ‘Time Series Analysis: Forecasting And Control, 5th Edition, By George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel And Greta M. Ljung, 2015. Published By John Wiley And Sons Inc., Hoboken, New Jersey, Pp. 712. ISBN: 978‐1‐118‐67502‐1’, Journal Of Time Series Analysis, 37(5), Pp. 709–711. Available At: Https://Doi.Org/10.1111/Jtsa.12194.

Woodward, W.A., Gray, H.L. And Elliott, A. (2020) ‘Nonstationary Time Series Models’, Applied Time Series Analysis, Pp. 203–220. Available At: Https://Doi.Org/10.1201/B11459-9.

World Health Organization (WHO) (2005) ‘The International Health Regulations (2005)’, International Organizations Law Review [Preprint]. Available At: Https://Doi.Org/10.1163/15723747-01602002.

Zhang, Z. Bin Et Al. (2021) ‘Countries Of Origin Of Imported COVID-19 Cases Into China And Measures To Prevent Onward Transmission’, Journal Of Travel Medicine, 27(8), Pp. 1–3. Available At: Https://Doi.Org/10.1093/JTM/TAAA139.
Published
2025-09-04
How to Cite
Sandra, Y. R., Mahmudah, M., Amoe, A., Jumali, J., & Abriyanto, M. (2025). Time Series Forecasting of Ship Departure Health Inspections for Strengthening Quarantine Surveillance Using the ARIMA Model. ancasakti ournal f ublic ealth cience nd esearch, 5(3), 353-362. https://doi.org/10.47650/pjphsr.v5i3.2114
Abstract viewed = 0 times
PDF downloaded = 0 times