Analisis Sentimen Ulasan Pengguna Tiktok pada Google Play Store Berbasis TF-IDF dan Support Vector Machine

  • Nursuci Putri Husain Universitas Islam Makassar
  • Sukirman Sukirman Universitas Islam Makassar
  • SAJIAH SAJIAH Universitas Islam Makassar

Abstract

The rapid development of information and communication technology, particularly in social media platforms, has created an environment where users actively share their experiences and opinions related to various services and applications. One platform that has gained significant popularity is TikTok, a video-sharing application that has become a global phenomenon. With the increasing number of TikTok users, user reviews on distribution platforms such as the Google Play Store have become a crucial source of information. Sentiment analysis of these reviews can provide deep insights into how users respond to the application, while also offering valuable feedback for developers. The research aims to conduct sentiment analysis of TikTok user reviews on the Google Play Store using the Term Frequency-Inverse Document Frequency (TF-IDF) weighting method and the Support Vector Machine (SVM) algorithm as a classification method to achieve optimal results. There are three main stages: the initial stage involves data collection and data pre-processing, followed by the pattern recognition stage, which includes TF-IDF weighting and SVM classification. The final stage consists of evaluation and analysis. The opinion classification obtained includes three categories: positive, negative, and neutral. Based on the evaluation results, the proposed method successfully achieved high accuracy for the 70-30% training-testing split, reaching 84%. The conclusion drawn from these evaluation results indicates that the proposed method can be utilized in the sentiment analysis process of TikTok user reviews.

References

Aditiya, P., Enri, U., & Maulana, I. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine. JURIKOM (Jurnal Riset Komputer), 9(4), 1020. https://doi.org/10.30865/jurikom.v9i4.4673

Alfiah Zulqornain, J., & Pandu Adikara, P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference (CPD). 5(7), 2886–2890. http://j-ptiik.ub.ac.id

Alamsyah, N. (n.d.). Sistem Pakar Diagnosis Penyakit Tanaman Cabai Berbasis Android Menggunakan Metode Forward Chaining: Vol.

ISSN (Issue 2).

al Qorni, Q., & Sutabri, T. (n.d.). Analisis Sentimen Pengguna Tik Tok Shop Menggunakan Algoritma Svm.

Faadilah, A. (2020). Analisis Sentimen Pada Ulasan Aplikasi Tokopedia di Google Play

Store Menggunakan Metode Long Short Term Memory. 1–46.

Fide, S. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (SVM) Dan Asosiasi.

(3), 346–358. https://ejournal3.undip.ac.id/index.php/gaussian/

Fauzan, A., Sanusi, H., & Wafa, M. A. (2021). Dampak Aplikasi Tik Tok pada Interaksi Sosial Remaja “Studi di Kecamatan Gambut Kabupaten Banjar.” Doctoral Dissertation, Universitas Islam Kalimantan MAB, 1–14.

Friska Aditia Indriyani, Ahmad Fauzi, & Sutan Faisal. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS : Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419

Husada, H. C., & Paramita, A. S. (2021). Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM). Teknika, 10(1), 18–26. https://doi.org/10.34148/teknika.v10i1.311

Husain, N. (2021). Perancangan Sistem Manajemen Penjualan Motor Cash Dan Credit Berbasis Web (Studi Kasus Pada Toko Raya Motor Kota Parepare). ILTEK : Jurnal Teknologi, 16(02), 94–101.

https://doi.org/10.47398/iltek.v16i02.53

Husain, N. P., Arisa, N. N., Rahayu, P. N., Arifin, A. Z., & Herumurti, D. (2017). Least Squares Support Vector Machines Parameter Optimization Based On Improved Ant Colony Algorithm For Hepatitis

Diagnosis. Jurnal Ilmu Komputer Dan Informasi, 10(1), 43. https://doi.org/10.21609/jiki.v10i1.428

Husain, N. P., & Aji, N. B. (2019). Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation. Jurnal ELTIKOM, 3(1), 17–25. https://doi.org/10.31961/eltikom.v3i1.99

Kinaswara, T. A., Hidayati, N. R., & Nugrahanti, F. (2019). Rancang Bangun Aplikasi Inventaris Berbasis Website Pada Kelurahan Bantengan | Kinaswara | Prosiding Seminar Nasional Teknologi Informasi dan Komunikasi (SENATIK). Prosiding Seminar Nasional Teknologi Informasi Dan Komunikasi (SENATIK), 2(1), 71–75. http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1073

Rina Noviana. (2022). Pembuatan Aplikasi Penjualan Berbasis Web Monja Store Menggunakan Php Dan Mysql. Jurnal Teknik Dan Science, 1(2), 112–124. https://doi.org/10.56127/jts.v1i2.128

Indra Kurnia, A., Furqon, M. T., & Rahayudi, B. (2018). Klasifikasi Kualitas Susu Sapi Menggunakan Algoritme Support Vector Machine (SVM) (Studi Kasus: Perbandingan Fungsi Kernel Linier dan RBF Gaussian) (Vol. 2, Issue 11). http://j-ptiik.ub.ac.id

Published
2024-01-22