Klasifikasi Bentuk Bingkai (Frame) Kacamata Menggunakan CNN dengan Arsitektur Inception V3 dan Augmented Reality Berbasis Android

  • Mochamad Wisuda Sardjono Universitas Gunadarma
  • Valdy Ramadhan Universitas Gunadarma
  • Valdy Ramadhan Universitas Gunadarma
  • Margi Cahyanti Universitas Gunadarma
  • Ericks Rachmat Swedia Universitas Gunadarma

Abstract

Glasses are not only a type of vision aid for people with eye diseases, but they are also an increasingly popular part of the fashion world. The choice of eyeglass frame design can influence a person's appearance in clothing, so when making a choice you must pay attention to two important aspects, namely style and comfort, and can change the impression on a person's face. When designing eyeglass frames, it is necessary to use the science of measuring the human body, because each human organ's size and shape are different from each other. So, with the diversity of human facial shapes, it becomes very important in making the choice of eyeglass frames and the challenge in conducting research to build an application to recommend eyeglass frames according to face shape. With the current technological era, it is possible to apply Artificial Intelligence (AI) and Machine Learning (ML) to be the best solution to answer these challenges. Several studies have tried to classify facial shape using ML, with the best results using the Inception V3 architecture. In this research, a Unity 3D-based application was developed that combines Augmented Reality (AR) with ML to recommend eyeglass frame shapes based on face shape. Inception V3 model training results show performance improvements over time. However, it is necessary to overcome overfitting in validation data. In testing the test data, the model achieved an accuracy of around 78.6%, indicating good prediction ability. This technology has the potential to help consumers make more informed decisions when selecting glasses

References

Brooks, C. W., & Borish, I. M. (2007). System For Ophthalmic Dispensing Third Edition. Philadelphia: Elsevier Butterworth-Hienermann.

Emmanuel, A., & Tio, D. (2019). Face shape classification using Inception v3. https://www.researchgate.net/publication/337386649_Face_shape_classification_using_Inception_v3.

Firmantara, M. R., Mudakir, I., & Nuriman. (2023). Augmented Reality Research Trends in Indonesia: A Systematic Literature. Journal of Science Education Research, 71-81.

Graham, D. L., & Ritchie, K. L. (2019). Making a Spectacle of Yourself: The Effect of Glasses and Sunglasses on Face Perception. Sage, 1-10.

Hapsari, A. A., Gernowo, R., & Widodo, C. E. (2020). Penggunaan Algoritma CART untuk Pemilihan Bingkai Kacamata dengan Penerapan Model Morfologi Indeks Wajah untuk Identifikasi Bentuk Wajah. Jurnal Sistem Informasi Bisnis, 1-8.

Hidayat, T., Astuti, I. A., Yaqin, A., Tjilen, A. P., & Arifianto, T. (2023). Grouping of Image Patterns Using Inception V3. INTERNATIONAL JOURNAL, 2336-2343.

Hidayatillah, M. T., Mardiyantoro, N., & Hidayat, M. (2022). SISTEM IDENTIFIKASI BENTUK WAJAH UNTUK PEMILIHAN FRAME KACAMATA MENGGUNAKAN METODE TRANSFER LEARINING. Jurnal Ilmiah Informatika dan Komputer Universitas Al-Qur'an , 70-78.

Ismawati, N. A., & Ramadhanti, S. (2022). Penerapan Artifical Intelligence Dalam Mendukug Pembelajaran Di Era Digita. Seminar Nasional Prosiding Amal Insani Foundation (pp. 158-166). Amal Insani Foundation.

Krzeszowski, T., Dziadek, B., Franca, C., Martins, F., Gouveia, E. R., & Przednowek, K. (2023, March 2023 Saturday). System for Estimation of Human Anthropometric Parameters Based on Data from Kinect v2 Depth Camera. Sensors - MDPI, pp. 1-12.

Lama, N. (2019). Face Shape Dataset. Retrieved from https://www.kaggle.com: https://www.kaggle.com/datasets/niten19/face-shape-dataset

Mehta, A., & Mahmoud, T. (2022). Human Face Shape Classification with Machine Learning. https://www.researchgate.net/publication/362903132_Human_Face_Shape_Classification_with_Machine_Learning. doi:https://doi.org/10.13140/RG.2.2.28282.57282

Ningsih, W., & Nurfauziah, H. (2023). Perbandingan Model Waterfall dan Metode Prototype Untuk Pengembangan Aplikasi Pada Sistem Informasi. Jurnal Ilmiah Metadata, 84-95.

Pratiwi, V. R., & Pardede, J. (2023). Image Captioning Menggunakan Metode Inception-V3 dan Transformer. Prosiding Diseminasi Fakultas Teknologi Industri - Institut Teknologi Nasional (pp. 1-14). Bandung: Itenas.

Rizal, R. A., Girsang, I. S., & Prasetyo, S. A. (2019). Klasifikasi Wajah Menggunakan Support Vector Machine (SVM). Riset dan E-Jurnal Manajemen Informatika Komputer, 1-4.

Young, S., Natalia, F., Sudirman, S., & Seong Ko, C. (2019). EYEGLASSES FRAME SELECTION BASED ON OVAL FACE SHAPE USING CONVOLUTIONAL NEURAL NETWORK. ICIC International, 707-715.

Zhao, Z., Zhou, L., & Zhang, T. (2020). Intelligent Recommendation System for Eyeglass Design. Springer Nature Switzerland AG, 402-411. doi:https://doi.org/10.1007/978-3-030-20441-9_42

Published
2024-07-25