Klasifikasi Liver Cirrhosis Menggunakan Teknik Ensemble: Studi Perbandingan Model Boosted Tree, Bagged Tree, dan Rusboosted Tree
Abstract
Liver cirrhosis, as a significant chronic liver disease, exhibits a rising global prevalence, demanding more effective preventive approaches. In an effort to enhance early detection and patient management, this research proposes the development of a liver cirrhosis risk prediction model using machine learning technology, specifically comparing the performance of three ensemble tree models: Ensemble Boosted Tree, Ensemble Bagged Tree, and Ensemble RUSBoosted Tree. Utilizing clinical and laboratory data from adults with a history or risk of cirrhosis, the study reveals that Ensemble Bagged Tree achieved the highest accuracy at 71%, followed by Ensemble Boosted Tree (67.2%) and Ensemble RUSBoosted Tree (66%). Analysis of clinical and laboratory variables provides further insights into the most significant contributors to risk prediction. The findings lay the groundwork for the advancement of a more sophisticated liver cirrhosis risk prediction tool, supporting a vision of more personalized and effective preventive strategies in liver disease management.
References
Deni, A. (2023). Manajemen Strategi di Era Industri 4.0. https://books.google.com/books?hl=en&lr=&id=YcLOEAAAQBAJ&oi=fnd&pg=PA223&dq=Keunggulan+machine+learning+terletak+pada+kemampuannya+untuk+mengeksplorasi+pola+dan+relasi+yang+rumit+dalam+dataset+besar,+menyajikan+peluang+baru+untuk+identifikasi+faktor+risiko,+peningkatan+akurasi+prediksi,+dan+pengembangan+intervensi+yang+lebih+terarah&ots=7c2y1_G5KO&sig=nw-WIsGA54SjS3prLR_hb8sFwgs
Firmansyah, H., Jurnal, Z. A.-J. I. J., & 2022, undefined. (2022). PENERAPAN ALGORITMA GRADIENT BOOSTED DECISION TREES PADA ADABOOST UNTUK KLASIFIKASI STATUS DESA. Repository.Upstegal.Ac.Id, 1(1). http://repository.upstegal.ac.id/6837/
Fitriyani, F., Software, R. W.-I. com J. of, & 2015, undefined. (2015). Integrasi Bagging dan Greedy Forward Selection pada Prediksi Cacat Software dengan Menggunakan Naïve Bayes. Neliti.Com. https://www.neliti.com/publications/90139/integrasi-bagging-dan-greedy-forward-selection-pada-prediksi-cacat-software-deng
Hamzah, B., Akbar, H., Rafsanjani, T., & Sinaga, A. (2021). Teori Epidemiologi Penyakit Tidak Menular. https://books.google.com/books?hl=en&lr=&id=FmBQEAAAQBAJ&oi=fnd&pg=PA59&dq=Penyakit+liver+cirrhosis,+sebagai+manifestasi+ekstrem+dari+kerusakan+jaringan+hati+yang+berkelanjutan,+merupakan+salah+satu+masalah+kesehatan+global+yang+terus+meningkat+prevalensinya.+&ots=abqxflKm_t&sig=IRXKA5LNetb8Fz1x4KwzFWpaGlw
Indahyanti, U., Azizah, N., Informatika, H. S.-J. S. dan, & 2022, undefined. (2022). Pendekatan Ensemble Learning Untuk Meningkatkan Akurasi Prediksi Kinerja Akademik Mahasiswa. Jsi.Politala.Ac.Id, 8(2), 2598–5841. https://doi.org/10.34128/jsi.v8i2.459
Kom, M. M. (n.d.). INTERNET OF THINGS. Researchgate.Net. Retrieved February 9, 2024, from https://www.researchgate.net/profile/Mambang-Mkom/publication/370044088_INTERNET_OF_THINGS/links/643abb8fe881690c4bd7d71b/INTERNET-OF-THINGS.pdf
Maramis, A. (2023). KLOROFILIN, Penawar Racun Bahan Makanan Berformalin. https://books.google.com/books?hl=en&lr=&id=2C_eEAAAQBAJ&oi=fnd&pg=PP1&dq=Cirrhosis+tidak+hanya+mempengaruhi+fungsi+metabolik+dan+detoksifikasi+hati,+tetapi+juga+berpotensi+menjadi+pemicu+komplikasi+serius,+seperti+sirosis+hati,+penyakit+hati+berlemak+non-alkoholik,+dan+kanker+hati.&ots=YtgRfLQYmR&sig=E25dGsQPVBEaI9yZbZ6wU4ogOWw
Marufah, A., Hanum, U., & Yafi’Zuhair, H. (2022). EFEKTIVITAS MEKANIKA NAPAS DIAFRAGMA. https://books.google.com/books?hl=en&lr=&id=LWylEAAAQBAJ&oi=fnd&pg=PP1&dq=Dalam+hal+ini,+teknologi+machine+learning+telah+muncul+sebagai+alat+yang+menjanjikan+untuk+meningkatkan+pemahaman+dan+prediksi+penyakit-penyakit+kompleks,+termasuk+liver+cirrhosis&ots=pqsnH6IzBE&sig=8Qj3iIZ1Swt515YFVRCJ6MdjHlQ
Prasetyo, A., Informatics, T. L.-J. of A., & 2022, undefined. (2022). Optimization of K-Nearest Neighbors Algorithm with Cross Validation Techniques for Diabetes Prediction with Streamlit. Jurnal.Polibatam.Ac.Id, 6(2), 194. https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4182
Saputro, D. (2023). WEKA 3.6. 9 (Waikato Environment for Knowledge Analysis): Tools untuk Memahami Machine Learning. https://books.google.com/books?hl=en&lr=&id=uZ7eEAAAQBAJ&oi=fnd&pg=PA1&dq=Keunggulan+machine+learning+terletak+pada+kemampuannya+untuk+mengeksplorasi+pola+dan+relasi+yang+rumit+dalam+dataset+besar,+menyajikan+peluang+baru+untuk+identifikasi+faktor+risiko,+peningkatan+akurasi+prediksi,+dan+pengembangan+intervensi+yang+lebih+terarah&ots=uHZVi1MADc&sig=daXXmpRhnLZm8Kuxagjs66k-cX0
Sudarman, E., STRATEGI, S. B.-J., & 2023, undefined. (n.d.). Pengembangan Model Kecerdasan Mesin Extreme Gradient Boosting Untuk Prediksi Keberhasilan Studi Mahasiswa. Mail.Strategi.It.Maranatha.Edu. Retrieved February 9, 2024, from https://mail.strategi.it.maranatha.edu/index.php/strategi/article/view/437