Facial Expression Recognition of Al-Qur'an Memorization Students Using Convolutional Neural Network
Abstract
Facial expression recognition technology has advanced significantly and has become an intriguing topic of study. This research focuses on the facial expressions of Al-Qur’an memorization students, which naturally reveal various aspects of their engagement, understanding, and emotional barriers about the verses being memorized. The issue is that facial expression recognition still lacks optimal accuracy, and the need for a better algorithmic model to improve accuracy is evident. Therefore, an intelligent computing system is required to address this problem. This study aims to enhance the accuracy of facial expression recognition in Al-Qur’an memorization students using the Convolutional Neural Network (CNN) method, classifying facial expressions such as happy, neutral, and tired based on collected facial image data, achieving improved accuracy. The first stage involves capturing image data via CCTV, followed by preprocessing, training the CNN model, result analysis, and model evaluation. By using the CNN method to recognize the facial expressions of Al-Qur’an memorization students, a high accuracy of 84% was achieved with a loss value of 14.9.
References
Adiatma, B. C. L., Utami, E., & Hartanto, A. D. (2021). Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network (CNN). Explore, 11(2), 75. https://doi.org/10.35200/explore.v11i2.478
AL Sigit Guntoro, Edy Julianto, & Djoko Budiyanto. (2022). Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network. Jurnal Informatika Atma Jogja, 3(2), 155–160. https://doi.org/10.24002/jiaj.v3i2.6790
Alamsyah, D., & Pratama, D. (2020). Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset. Jurnal Teknologi Informasi, 4(2), 350–355. https://doi.org/10.36294/jurti.v4i2.1714
Bhagat, D., Vakil, A., Gupta, R. K., & Kumar, A. (2024). Facial Emotion Recognition (FER) using Convolutional Neural Network (CNN). Procedia Computer Science, 235(2023), 2079–2089. https://doi.org/10.1016/j.procs.2024.04.197
Daffa Ulhaq, M. R., Zaidan, M. A., & Firdaus, D. (2023). Pengenalan Ekspresi Wajah Secara Real-Time Menggunakan Metode SSD Mobilenet Berbasis Android. Journal of Technology and Informatics (JoTI), 5(1), 48–52. https://doi.org/10.37802/joti.v5i1.387
Dalle Nogare, L., Cerri, A., & Proverbio, A. M. (2023). Emojis Are Comprehended Better than Facial Expressions, by Male Participants. Behavioral Sciences, 13(3). https://doi.org/10.3390/bs13030278
Fata, B. S., & Rosyadi, I. (2024). Kesejahteraan Emosional Santri Penghafal Al-Qur’an di Pesantren an-Nuqthah, Tangerang. Al- Fikrah, 4(2), 124–137.
Huang, Z. Y., Chiang, C. C., Chen, J. H., Chen, Y. C., Chung, H. L., Cai, Y. P., & Hsu, H. C. (2023). A study on computer vision for facial emotion recognition. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-35446-4
I Putu Agus Aryawan, I Nyoman Purnama, K. Q. F. (2023). Analisis Perbandingan Algoritma Cnn Dan Svm Pada Klasifikasi Ekspresi Wajah. Jurnal Teknologi Informasi Dan Komputer, 9(4), 399–408.
Ihsan, M., Niswatin, R. K., & Swanjaya, D. (2021). Deteksi Ekspresi Wajah Menggunakan Tensorflow. Joutica, 6(1), 428. https://doi.org/10.30736/jti.v6i1.554
Kaur, N., Kaur, K., & Hafiz, A. (2022). Facial Expression Recognition Using Convolutional Network. International Journal for Research in Applied Science & Engineering Technolog, 10(VI), 2779–2785. https://doi.org/https://doi.org/10.22214/ijraset.2022.44447
Lestari Perdana, A., Suharni, & Riadi, A. (2023). Pengenalan Ekspresi Wajah Pengunjung Deal Coffee Menggunakan Metode Convolutional Neural Network (Cnn). 04(November), 132–139. https://journal.unm.ac.id/index.php/JESSI/article/view/1024
Nour, N., Elhebir, M., & Viriri, S. (2020). Face Expression Recognition using Convolution Neural Network (CNN) Models. International Journal of Grid Computing & Applications, 11(4), 1–11. https://doi.org/10.5121/ijgca.2020.11401
Nurdiati, S., Najib, M. K., Bukhari, F., Ardhana, M. R., Rahmah, S., & Blante, T. P. (2022). Perbandingan AlexNet dan VGG untuk Pengenalan Ekspresi Wajah pada Dataset Kelas Komputasi Lanjut. Techno.Com, 21(3), 500–510. https://doi.org/10.33633/tc.v21i3.6373
Pise, A. A., Alqahtani, M. A., Verma, P., Purushothama, K., Karras, D. A., Prathibha, S., & Halifa, A. (2022). Methods for Facial Expression Recognition with Applications in Challenging Situations. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9261438
Revina, I. M., & Emmanuel, W. R. S. (2021). A Survey on Human Face Expression Recognition Techniques. Journal of King Saud University - Computer and Information Sciences, 33(6), 619–628. https://doi.org/10.1016/j.jksuci.2018.09.002
Riadi, A., & Sulaehani, R. (2019). Analisis Implementasi Preprocessing Dengan Otsu-Gaussian Pada Pengenalan Wajah. ILKOM Jurnal Ilmiah, 11(3), 200–205. https://doi.org/10.33096/ilkom.v11i3.457.200-205
Shahzad, H. M., Bhatti, S. M., Jaffar, A., Akram, S., Alhajlah, M., & Mahmood, A. (2023). Hybrid Facial Emotion Recognition Using CNN-Based Features. Applied Sciences (Switzerland), 13(9), 1–14. https://doi.org/10.3390/app13095572
Sidik, A. D. W. M., Suryana, A., Edwinanto, Artiyasa, M., Pradiftha Junfithrana, A., Himawan Kusumah, I., & Imamulhak, Y. (2021). Pengenalan Ekspresi Wajah Menggunakan Teknik Filter Wavelet Gabor. FIDELITY : Jurnal Teknik Elektro, 3(1), 1–4. https://doi.org/10.52005/fidelity.v3i1.84
Sriyati, S., Setyanto, A., & Luthfi, E. E. (2020). Literature Review: Pengenalan Wajah Menggunakan Algoritma Convolutional Neural Network. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 8(2). https://doi.org/10.30646/tikomsin.v8i2.463