Automated Medical Image Processing for Lung Pneumonia Diagnosis Based on LS-SVM

  • Nursuci Putri Husain Universitas Islam Makassar
  • Hamdan Arfandy Universitas Islam Makassar
  • Ryan Midzar Wiradinata Ramli Universitas Islam Makassar
Keywords: Classification, Pneumonia, image processing, HoG, LS-SVM

Abstract

Pneumonia is an inflammation of the lungs that causes pain when breathing and limits oxygen intake. Pneumonia can be caused by bacteria, viruses, and fungi. Image processing, a branch of informatics or computer science, is a field highly related to the manipulation and analysis of digital images. This study aims to design a medical image processing system as an alternative to support the diagnosis of Pneumonia in the lungs using the LS-SVM method. LS-SVM (Least Square Support Vector Machine) is a simpler and modified model of the SVM method. HoG (Histogram of Gradient) is a commonly used feature extraction method in image processing and object detection. The objective of this study is to improve the quality of healthcare services and assist in faster and more accurate clinical decision-making. The results show that lung image analysis using the LS-SVM method has a good accuracy level in the image classification process, with 2000 training data inputs processed in the preprocessing stage, consisting of 1000 Pneumonia images and 1000 normal lung images, while the testing data used consisted of 500 images, with 250 Pneumonia images and 250 normal lung images. Based on the tested data, the system achieved an accuracy of 81% for 1300 tests, proving that the LS-SVM method is effective in image processing with satisfactory results.

References

Cai, K., Wang, Z., Yang, X., Fu, W., & Zhao, X. (2024). Predicting Clinical Outcomes in COVID-19 and Pneumonia Patients: A Machine Learning Approach. Viruses, 16(10), 1624. https://doi.org/10.3390/v16101624

Husain, N. P. (2021). Best First Feature Selection Dan Radial Basis Function Untuk Klasifikasi Penyakit Diabetes. Iltek : Jurnal Teknologi, 16(01), 29–33. https://doi.org/10.47398/iltek.v16i01.41

Husain, N. P., & Aji, N. B. (2019). Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation. Jurnal ELTIKOM, 3(1), 17–25. https://doi.org/10.31961/eltikom.v3i1.99

Husain, N. P., Arisa, N. N., Rahayu, P. N., Arifin, A. Z., & Herumurti, D. (2017). Least Squares Support Vector Machines Parameter Optimization Based On Improved Ant Colony Algorithm For Hepatitis Diagnosis. Jurnal Ilmu Komputer Dan Informasi, 10(1), 43. https://doi.org/10.21609/jiki.v10i1.428

Irwan Prasetya Gunawan, Ratnadewi, Safrizal, Nursuci Putri Husain, & Guson Prasamuarso Kuntarto. (2023). Pemrosesan Citra (P. 143). Pt Mafy Media Literasi Indonesia. https://books.google.co.id/books?hl=id&lr=&id=_f_uEAAAQBAJ&oi=fnd&pg=PA1&ots=sDEslbXYNo&sig=dIkcpAXmRjKYbhSEqVUXOMCrD8s&redir_esc=y#v=onepage&q&f=false

Jiang, N. (2020). Role of Digital Image Processing in Image Art under the Background of Big Data. IOP Conference Series: Materials Science and Engineering, 750(1), 012095. https://doi.org/10.1088/1757-899X/750/1/012095

Lee, K. H., Gordon, A., & Foxman, B. (2016). The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective. Evolution, Medicine, and Public Health, 2016(1), 95–109. https://doi.org/10.1093/emph/eow007

Ortiz-Toro, C., García-Pedrero, A., Lillo-Saavedra, M., & Gonzalo-Martín, C. (2022). Automatic detection of pneumonia in chest X-ray images using textural features. Computers in Biology and Medicine, 145, 105466. https://doi.org/10.1016/j.compbiomed.2022.105466

Rayed, Md. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, 101504. https://doi.org/10.1016/j.imu.2024.101504

Wang, C., Li, Z., Dey, N., Li, Z., Ashour, A. S., Fong, S. J., Sherratt, R. S., Wu, L., & Shi, F. (2018). Histogram of Oriented Gradient Based Plantar Pressure Image Feature Extraction and Classification Employing Fuzzy Support Vector Machine. Journal of Medical Imaging and Health Informatics, 8(4), 842–854. https://doi.org/10.1166/jmihi.2018.2310

Published
2025-01-19