Detection of Persistent vs Non-Persistent Medications in Pharmacy Using Artificial Intelligence: Development of Intelligent Algorithms for Pharmaceutical Product Safety

  • Sustrin Abasa Universitas Pancasakti Makassar, Indonesia
  • Firman Aziz Universitas Pancasakti
  • Pertiwi Ishak Universitas Pancasakti Makassar, Indonesia
  • Jeffry Jeffry Institut Teknologi Bacharuddin Jusuf Habibie
Keywords: Decision Tree, Early Detection, Persistent and Non-Persistent, Artificial Intelligence, Doctor's Prescription, Pharmacy

Abstract

The pharmaceutical industry requires an effective system to detect medications that are persistent and non-persistent, in order to improve safety and the efficiency of product management. This study aims to develop a system based on Artificial Intelligence (AI) using the Decision Tree algorithm to classify medications based on prescription data provided by doctors. The dataset used in this study includes prescription information, such as medication type, prescription quantity, frequency of use, and duration of medication use, which are used to determine whether the medication is persistent or non-persistent. The Decision Tree algorithm is applied to develop a reliable classification model, with the goal of detecting medications that are used continuously (persistent) and those that are not used on a continuous basis (non-persistent). This study applies AI technology in the pharmaceutical field, focusing on the use of doctor prescriptions and classifying medications based on usage characteristics. The results of the study show that the algorithm performs well with an accuracy of 78.33%, recall of 0.7804, precision of 0.7804, and an F1 score of 0.6934, indicating the model's ability to classify medications with reasonable accuracy.

References

Ahmed, M. A., Rizaner, A., & Ali, H. U. (2018). A novel decision tree classification based on post-pruning with Bayes minimum risk. PLoS ONE, 13(4). https://doi.org/10.1371/JOURNAL.PONE.0194168
Amalia, D. (2020). Tingkat kepatuhan minum obat anti tuberkulosis pada pasien TB paru dewasa rawat jalan di Puskesmas Dinoyo. http://etheses.uin-malang.ac.id/20283/
Ambarwari, A., Adrian, Q., … Y. H.-(Rekayasa S. D., & 2020, undefined. (n.d.). Analysis of the effect of data scaling on the performance of the machine learning algorithm for plant identification. Jurnal.Iaii.or.Id. Retrieved November 6, 2024, from http://jurnal.iaii.or.id/index.php/RESTI/article/view/1517
Anufia, B., & Alhamid, T. (2019). Instrumen Pengumpulan Data. https://osf.io/preprints/inarxiv/s3kr6/download
Aziz, F. (2020). Klasifikasi Pelanggan Deposito Potensial menggunakan Ensembel Least Square Support Vector Machine. Journal of System and Computer Engineering, 1(1), 1. http://journal.unpacti.ac.id/index.php/JSCE/article/view/80
Aziz, F., Pancasakti Makassar, U., Wahab, A., Keperawatan, I., Karya, U., & Muna, P. (n.d.). IMPLEMENTASI METODE SUPPORT VECTOR MACHINE UNTUK DETEKSI DINI PERSISTENSI OBAT DALAM FARMASI. Journalanr.Arlisakamadani.ComF Aziz, A WahabJournal Pharmacy and Application of Computer Sciences, 2024•journalanr.Arlisakamadani.Com. Retrieved March 8, 2024, from https://journalanr.arlisakamadani.com/index.php/jopacs/article/view/50
Carudin, C., Marisa, M., Murnawan, M., Reba, F., & Koibur, M. (2024). Buku Ajar Data Mining.
Fatunnisa, A., (JAMIKA), H. M.-J. M. I., & 2024, undefined. (n.d.). Prediksi Kelulusan Tepat Waktu Siswa SMK Teknik Komputer Menggunakan Algoritma Random Forest. Ojs.Unikom.Ac.Id. Retrieved November 6, 2024, from https://ojs.unikom.ac.id/index.php/jamika/article/view/12114
Kamiński, B., Jakubczyk, M., & Szufel, P. (2018). A framework for sensitivity analysis of decision trees. Central European Journal of Operations Research, 26(1), 135–159. https://doi.org/10.1007/S10100-017-0479-6
Lawi, A., Aziz, F., & Syarif, S. (2018). Ensemble GradientBoost for increasing classification accuracy of credit scoring. Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, 2018-January, 1–4. https://doi.org/10.1109/CAIPT.2017.8320700
Markoulidakis, I., Kopsiaftis, G., Rallis, I., & Georgoulas, I. (2021). Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem. ACM International Conference Proceeding Series, 412–419. https://doi.org/10.1145/3453892.3461323
Oeri, N., Kälin, S., of, D. B.-B. J., & 2020, undefined. (n.d.). The role of executive functions in kindergarteners’ persistent and non‐persistent behaviour. Wiley Online LibraryN Oeri, S Kälin, D ButtelmannBritish Journal of Developmental Psychology, 2020•Wiley Online Library. Retrieved July 17, 2024, from https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/bjdp.12317
Osman, A. S. (2019). Data mining techniques. http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1841
Pires, I. M., Hussain, F., Garcia, N. M., Lameski, P., & Zdravevski, E. (2020). Homogeneous data normalization and deep learning: A case study in human activity classification. Mdpi.Com. https://doi.org/10.3390/fi12110194
Qvarnström, M., Kahan, T., Kieler, H., Brandt, L., Hasselström, J., & Wettermark, B. (2019). Medication persistence to antihypertensive drug treatment–a cross-sectional study of attitudes towards hypertension and medication in persistent and non-persistent. Taylor & FrancisM Qvarnström, T Kahan, H Kieler, L Brandt, J Hasselström, B WettermarkBlood Pressure, 2019•Taylor & Francis, 28(5), 309–316. https://doi.org/10.1080/08037051.2019.1627858
Wida, K. (2020). Evaluasi ketepatan penggunaan obat pada Pasien Skizofrenia di Instalasi Rawat Inap Rumah Sakit Jiwa Mutiara Sukma Tahun 2019. http://etheses.uin-malang.ac.id/id/eprint/25265
Wijaya, H., Rosyadi, A., Kurniawan, K., & Putri, W. (2023). KOMUNIKASI FARMASI: Komuniasi Yang Efektif Dalam Praktik Farmasi.
Published
2025-03-17