Application of the C45 Decision Tree Method in Evaluating the Potential and Contribution of Retribution to Pad: Case Study of Barru Regency

  • Wahyu Arfiansyah Universitas Muhammadiyah Parepare
  • Muhammad Zainal Universitas Muhammadiyah Parepare
  • Wahyuddin Wahyuddin Universitas Muhammadiyah Parepare
  • Masnur Masnur Universitas Muhammadiyah Parepare
Keywords: Local Original Income, Retribution, Decision Tree C4.5, Tax, PAD Management

Abstract

Local Original Revenue (PAD) is a vital source for financing regional development, with levies as the main component. However, the main challenge faced is the inability of conventional evaluation methods to identify factors that influence the contribution of levies to PAD effectively. This study aims to evaluate the potential and contribution of levies to PAD by applying the Decision Tree C4.5 method. This research method uses a quantitative data-based approach, by analyzing tax data from various sectors, including Hotel Tax, Parking Tax, Entertainment Tax, and Advertising Tax. The results of the study indicate that the C4.5 method successfully identified more complex contribution patterns and provided a deeper understanding of the influence of seasonal and external factors on tax contributions. Entertainment Tax and Hotel Tax showed the largest contributions in certain periods, while Parking Tax showed greater stability throughout the year. The implications of this study indicate that the application of C4.5 can improve the effectiveness of PAD management, by providing a basis for tax policies that are more data-based and responsive to economic and seasonal fluctuations.

References

Wang, J. (2022). Application of C4 (No. 5). https://doi.org/10.1155/2022/7442352

Rahardja, U. (2022). Application of the C4.5 algorithm for identifying regional zone status using a decision tree in the COVID-19 series. Aptisi Transactions on Technopreneurship, 4(2), 164–173. https://doi.org/10.34306/att.v4i2.234

Ding, L., & Zeng, X. (2021). Application of decision tree model based on C4.5 algorithm in nursing quality management evaluation. Journal of Medical Imaging and Health Informatics. https://doi.org/10.1166/jmihi.2021.3463

Tukino, T. (2019). Penerapan algoritma C4.5 untuk memprediksi keuntungan pada PT SMOE Indonesia. Jurnal Sistem Informasi Bisnis, 9(1), 39–46. https://doi.org/10.21456/vol9iss1pp39-46

The decision tree classification with C4.5 and C5.0 algorithm based on R to detect case fatality rate of dengue hemorrhagic fever in Indonesia. (2021). Journal of Physics: Conference Series, 1776(1), 012040. https://doi.org/10.1088/1742-6596/1776/1/012040

Baco, S., Husain, N. P., Halim, N. H. I. S., & Teknik Informatika, J. (2024). Perancangan aplikasi kepuasan mahasiswa terhadap dosen Fakultas Teknik Universitas Islam Makassar menggunakan metode Simple Additive Weighting. Journal of System and Computer Engineering, 5(2), 168–181. https://doi.org/10.61628/jsce.v5i2.1211

Masnur, M., Alam, S., Zainal, M., & Asriadi, A. (2023). Sistem klasifikasi potensi tanaman palawija menggunakan metode K-Means. Jurnal INSTEK (Informatika Sains dan Teknologi), 8(2), 396–404. https://doi.org/10.24252/instek.v8i2.42970

Farokhah, L. (2021). Perbandingan metode deteksi wajah menggunakan OpenCV Haar Cascade, OpenCV SSD dan DLib CNN. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(3), 609–614. https://doi.org/10.29207/resti.v5i3.3125

Comparison of the Naïve Bayes method and support vector machine on Twitter sentiment analysis. (2022). SMATIKA Jurnal: STIKI Informatika Jurnal. http://jurnal.stiki.ac.id/SMATIKA/article/view/455

Putri, A. D., Sholekhah, F., Dadynata, E., Efrizoni, L., Rahmaddeni, R., & Sapina, N. (2024). Penerapan algoritma decision tree C4.5 untuk memprediksi tingkat kelangsungan hidup pasien kanker tiroid. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1485–1495. https://doi.org/10.57152/malcom.v4i4.1532

Aliyah, S., Desi, E., Nasution, F. P., & Tahel, F. (2025). Analisis algoritma C4.5 dalam mengukur tingkat kepuasan staf terhadap kinerja teknisi komputer. Jurnal Indonesia Manajemen Informasi dan Komunikasi, 6(1), 334–345. https://doi.org/10.35870/jimik.v6i1.1177

Masnur, M., Alam, S., Zainal, M., & Asriadi, A. (2022). Menghitung kendaraan di parkiran dengan metode Support Vector Machine (SVM). Jurnal Ilmiah Teknik Unida, 3(2), 140–148. https://doi.org/10.55616/jitu.v3i2.369

Muhammad, I., Masnur, M., & Syam, A. G. (2021). Aplikasi QR Code sebagai sarana penyampaian informasi pohon di Kebun Raya Jompie. Jurnal Sintaks Logika, 1(1), 33–41. https://doi.org/10.31850/jsilog.v1i1.694

Tukino, T. (2023). Penerapan metode algoritma C4.5 dalam penilaian kelayakan pemberian kredit kepada mitra usaha PT Arita Prima Sukses. Prosiding Seminar Nasional Ilmu Sosial dan Teknologi, 5, 306–314. https://doi.org/10.33884/psnistek.v5i.8098

Zhang, H., Seal, S., Wu, D., Bouffard, F., & Boulet, B. (2022). Building energy management with reinforcement learning and model predictive control: A survey. IEEE Access, 10, 27853–27862. https://doi.org/10.1109/access.2022.3156581

Masnur, M., & Asra, A. (2021). Sistem informasi e-farming berbasis web di Kabupaten Pinrang. Jurnal Sintaks Logika, 1(3), 166–171. https://doi.org/10.31850/jsilog.v1i3.1111

Masnur, M., Alam, S., Zainal, M., & Fazil, M. E. (2024). Perancangan sistem pengenalan wajah menggunakan Python, OpenCV dan Haarcascade. Jurnal INSTEK (Informatika Sains dan Teknologi), 9(2), 285–298. https://doi.org/10.24252/instek.v9i2.50354

Irmayani, I., Azis, D. A., Abdullah, A., & PB, M. I. (2022). Agricultural innovation dissemination strategy in rice commodities welcoming the digitalization era as an effort to support sustainable agricultural development. Jurnal AGRIKAN (Agribisnis Perikanan), 15(2), 490–494. https://doi.org/10.52046/agrikan.v15i2.1266

Ahmad, T., et al. (2021). Artificial intelligence in sustainable energy industry: Status quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834. https://doi.org/10.1016/j.jclepro.2021.125834

Riyadani, M. E., & Subiyanto, S. (2022). Sistem keamanan untuk otorisasi pada smart home menggunakan pengenalan wajah dengan library OpenCV. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 5(2), 69–77. https://doi.org/10.47970/siskom-kb.v5i2.284

Jiang, F., Yi, L., Li, H., Wang, F., & Lu, K. (2021). The software architecture design for the test and evaluation platform of distributed photovoltaic comprehensive energy efficiency. In 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG) (pp. 588–592). https://doi.org/10.1109/icwcsg53609.2021.00125

Chaichan, M. T., et al. (2023). Sand and dust storms’ impact on the efficiency of the photovoltaic modules installed in Baghdad: A review study with an empirical investigation. Energies, 16(9), 3938. https://doi.org/10.3390/en16093938

Published
2025-04-30
Abstract viewed = 79 times
PDF downloaded = 52 times