Sentiment Analysis in Indonesian’s Presidential Election 2024 Using Transfomer (Distilbert-Base-Uncased)
Abstract
Utilizing a transformer-based natural language processing model called DistilBERT-base-uncased, this study investigates the use of sentiment analysis in relation to Indonesia's 2024 presidential election. Particularly during political events, sentiment analysis is a potent tool for gaining insight into public opinion. The program divides public posts' sentiment into positive and negative categories by examining social media data (twitter). In order to assure consistency and correctness, the dataset used in the research has been carefully selected. DistilBERT is then used to train the model. The result shows from 19920 row of data only 4.47% of Indonesia’s citizen left positive comment.
References
Abasa, S., Aziz, F., Ishak, P., & Jeffry. (2025). Detection of persistent vs non-persistent medications in pharmacy using artificial intelligence: Development of intelligent algorithms for pharmaceutical product safety. Journal of System and Computer Engineering (JSCE), 6(1), 137–143.
Ahyana, N., Jeffry, J., Fadliana, N., Rimalia, W., & Iskandar, I. (2025). CNN modeling for classification of Bugis traditional cakes. Journal of System and Computer Engineering, 6(1), 137–143. https://doi.org/10.61628/jsce.v6i1.1685.
Akpatsa, S. K., et al. (2022). Online news sentiment classification using DistilBERT. Journal of Quantum Computing, 4(1), 1–11. https://doi.org/10.32604/jqc.2022.026658
Baharuddin, T., Qodir, Z., Jubba, H., & Nurmandi, A. (2022). Prediction of Indonesian presidential candidates in 2024 using sentiment analysis and text search on Twitter. International Journal of Communication and Society, 4(2), 204–213. https://doi.org/10.31763/ijcs.v4i2.512
Berfu, B., Ali, H., Arzucan, A., & Arzucanozgür, A. A. (2020). Analyzing ELMo and DistilBERT on socio-political news classification. GitHub. https://github.com/huggingface/
Damayanti, L., & Lhaksmana, K. M. (2024). Sentiment analysis of the 2024 Indonesia presidential election on Twitter. Jurnal dan Penelitian Teknik Informatika, 8(2). https://doi.org/10.33395/v8i2.13379
Digitus, K., Diantoro, A., Soderi, A., Rohman, A., & Sitorus, A. T. (2023). Sentiment analysis of public opinion on the 2024 presidential election in Indonesia using Twitter data with the K-NN method. Unpublished manuscript.
Fattah, F. S., & Ratnasari, C. I. (2023). Sentiment analysis of Indonesian presidential candidate. Fardhan Saifullah Fattah. [Self-published].
Firdaus, A. A., Yudhana, A., & Riadi, I. (2024). Prediction of presidential election results using sentiment analysis with pre and post candidate registration data. Unpublished manuscript.
Geni, L., Yulianti, E., & Sensuse, D. I. (2023). Sentiment analysis of tweets before the 2024 elections in Indonesia using IndoBERT language models. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 9(3), 746–757. https://doi.org/10.26555/jiteki.v9i3.26490
Igali, A., Abdrakhman, A., Torekhan, Y., & Shamoi, P. (2024, August). Tracking emotional dynamics in chat conversations: A hybrid approach using DistilBERT and emoji sentiment analysis. arXiv. http://arxiv.org/abs/2408.01838
Iparraguirre-Villanueva, O., et al. (2023, February). The public health contribution of sentiment analysis of monkeypox tweets to detect polarities using the CNN-LSTM model. Vaccines (Basel), 11(2). https://doi.org/10.3390/vaccines11020312
Nair, A. R., Singh, R. P., Gupta, D., & Kumar, P. (2024). Evaluating the impact of text data augmentation on text classification tasks using DistilBERT. In Procedia Computer Science (pp. 102–111). Elsevier B.V. https://doi.org/10.1016/j.procs.2024.04.013
Palani, S., Rajagopal, P., & Pancholi, S. (2021, June). T-BERT -- Model for sentiment analysis of micro-blogs integrating topic model and BERT. arXiv. http://arxiv.org/abs/2106.01097
Resti, J., Cahyanti, R., Maftuhah, D. N., Santoso, A. B., & Budi, I. (2024). Number 1 of 2026 candidates of the 2024 Indonesian presidential election. Teknologi Informasi (RESTI), 10(4), 516–524. https://doi.org/10.29207/resti.v8i4.5839
Sulistianingsih, N., & Switrayana, I. N. (2024). Enhancing sentiment analysis for the 2024 Indonesia election using SMOTE-Tomek Links and binary logistic regression. International Journal of Education and Management Engineering, 14(3), 22–32. https://doi.org/10.5815/ijeme.2024.03.03
Wahyudi, A., Santoso, G. B., & Sholihah, B. (2024, February). Analysis of the sentiment of Indonesian presidential candidates for 2024 on the YouTube social media platform using the support vector machine method. Intelmatics, 4(1), 22–30. https://doi.org/10.25105/itm.v4i1.17636