Performance Exploration of Tree-Based Ensemble Classifiers for Liver Cirrhosis: Integrating Boosting, Bagging, and RUS Techniques
Abstract
Liver cirrhosis, as a significant chronic liver disease, exhibits a rising global prevalence, demanding more effective preventive approaches. In an effort to enhance early detection and patient management, this research proposes the development of a liver cirrhosis risk prediction model using machine learning technology, specifically comparing the performance of three ensemble tree models: Ensemble Boosted Tree, Ensemble Bagged Tree, and Ensemble RUSBoosted Tree. Utilizing clinical and laboratory data from adults with a history or risk of cirrhosis, the study reveals that Ensemble Bagged Tree achieved the highest accuracy at 71%, followed by Ensemble Boosted Tree (67.2%) and Ensemble RUSBoosted Tree (66%). Analysis of clinical and laboratory variables provides further insights into the most significant contributors to risk prediction. The findings lay the groundwork for the advancement of a more sophisticated liver cirrhosis risk prediction tool, supporting a vision of more personalized and effective preventive strategies in liver disease management
References
Hamzah, B., Akbar, H., Rafsanjani, T., & Sinaga, A. (2021). Teori epidemiologi penyakit tidak menular.
Maramis, A. (2023). Klorofilin, penawar racun bahan makanan berformalin.
Kom, M. M. (2024). Internet of Things. ResearchGate. https://www.researchgate.net/profile/Mambang-Mkom/publication/370044088_INTERNET_OF_THINGS/links/643abb8fe881690c4bd7d71b/INTERNET-OF-THINGS.pdf
Marufah, A., Hanum, U., & Yafi’Zuhair, H. (2022). Efektivitas mekanika napas diafragma.
Indahyanti, U., Azizah, N., & Sari, H. S. (2022). Pendekatan ensemble learning untuk meningkatkan akurasi prediksi kinerja akademik mahasiswa. Jurnal Sistem dan Informatika, 8(2), 2598–5841. https://doi.org/10.34128/jsi.v8i2.459
Firmansyah, H., & Azhar, Z. (2022). Penerapan algoritma Gradient Boosted Decision Trees pada AdaBoost untuk klasifikasi status desa. Jurnal Informatika, 1(1). http://repository.upstegal.ac.id/6837/
Fitriyani, F., & Wibowo, R. (2015). Integrasi bagging dan greedy forward selection pada prediksi cacat software dengan menggunakan Naïve Bayes. International Journal of Software. https://www.neliti.com/publications/90139/integrasi-bagging-dan-greedy-forward-selection-pada-prediksi-cacat-software-deng
Saputro, D. (2023). WEKA 3.6.9 (Waikato Environment for Knowledge Analysis): Tools untuk memahami machine learning.
Deni, A. (2023). Manajemen strategi di era industri 4.0.
Hadi, I. (2016). Buku ajar manajemen keselamatan pasien.
Prasetyo, A., & Lestari, T. (2022). Optimization of K-Nearest Neighbors algorithm with cross validation techniques for diabetes prediction with Streamlit. Journal of Applied Informatics and Computing, 6(2), 194. https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4182
Sudarman, E., & Budhi, S. (2023). Pengembangan model kecerdasan mesin Extreme Gradient Boosting untuk prediksi keberhasilan studi mahasiswa. Jurnal Strategi. https://mail.strategi.it.maranatha.edu/index.php/strategi/article/view/437