Implementation of the K-Means Algorithm for Clustering Students’ Web Programming Course Grades Using Silhouette Score
Abstract
The development of information technology requires students majoring in informatics engineering to master web programming as one of the core competencies of the study program. Variations in students' ability to understand the material are reflected in significant differences in grades, so an objective analysis approach is needed to determine the ability of students. This study aims to group students based on academic grades in Web Programming courses using the K-Means algorithm. The data analyzed includes 1-3 assignment grades, attendance, UTS, and UAS from 32 students in the Department of Informatics Engineering, University of Papua. The research stages include preprocessing, data normalization, and clustering process using Orange Data Mining tools. Determination of the optimal number of clusters is done using the Silhouette Score method, and the best results are obtained at K = 4 with a Silhouette Score value of 0.513 which indicates a good cluster structure. The clustering results show that Cluster 1 has the highest score with a final score ranging from 0.93-1 with an Excellent score category consisting of 8 students, Cluster 2 with a Poor score category consists of 10 students with a final score range of 0.23-0.61, then Cluster 3 with a Good score category consists of 10 students with a Final score of 0.78-0.87 and Cluster 4 with a Fair score category consists of 4 students with a score range of 0.64-0.75. The results of this study provide information about the distribution of student abilities and can be the basis for improving learning strategies in the future.
References
Ahmad Harmain, Paiman, P., Kurniawan, H., Kusrini, K., & Dina Maulina. (2022). Normalisasi Data Untuk Efisiensi K-Means Pada Pengelompokan Wilayah Berpotensi Kebakaran Hutan Dan Lahan Berdasarkan Sebaran Titik Panas. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 2(2), 83–89. https://doi.org/10.46764/teknimedia.v2i2.49
Arslan, E., & Özdener Dönmez, N. (n.d.). Clustering Students Based on Gamification User Types and Learning Styles.
Basri, A., Mubarak, A., Siradjuddin, H. K., Abdullah, S. Do, Studi, P., Informatika, T., Teknik, F., Khairun, U., Metro, J. J., & Selatan, K. T. (2023). Penentuan Jumlah Klaster Terbaik pada K-Means dalam Melihat Pola Pengelompokan Data Mahasiswa yang Telah Lulus. JATI (Jurnal Jaringan Dan Teknologi Informasi ) , 3(1), 80–86. https://doi.org/00.0000/jati
Lnc. Prakash, K., Suryanarayana, G., Swapna, N., Bhaskar, T., & Kiran, A. (2023). Optimizing K-Means Clustering using the Artificial Firefly Algorithm. International Journal of Intelligent Systems and Applications in Engineering, 11(9), 461–468.
Maulana, I., Adnandi, M. A., & Andriani, F. (2024). Evaluasi Penggunaan Metode Pembelajaran Berbasis Proyek Dalam Mata Kuliah Pengenalan Pemrograman: Studi Kasus. JoiTechs ( Journal Of Information Technology and Computer Science ), 1(1), 21–25.
Mohd Talib, N. I., Abd Majid, N. A., & Sahran, S. (2023). Identification of Student Behavioral Patterns in Higher Education Using K-Means Clustering and Support Vector Machine. Applied Sciences (Switzerland), 13(5). https://doi.org/10.3390/app13053267
Muhammad Zulfadhilah, Mambang, & Septyan Eka Prastya. (2022). Implementasi Metode K-Means Clustering untuk Meningkatkan Penjaringan Mahasiswa. Tematik, 9(2), 152–160. https://doi.org/10.38204/tematik.v9i2.1053
Nurdiyansyah, F., & Akbar, I. (2021). Implementasi Algoritma K-Means untuk Menentukan Persediaan Barang pada Poultry Shop. Jurnal Teknologi Dan Manajemen Informatika, 7(2), 86–94. https://doi.org/10.26905/jtmi.v7i2.6377
Reza Pahlevi Kurniawan, & Ferdiansyah. (2023). Penerapan Algoritme K-Means Clustering Untuk Mengelompokkan Siswa Berdasarkan Nilai Akademik Di Smp Negeri 207 Ssn. Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2(2), 530–538.
Safitri Juanita, R. D. C. (2024). K-Means Clustering with Comparison of Elbow and Silhouette Methods for Medicines Clustering Based on User Reviews. Jurnal Teknik Informatika (JUTIF), 5(1). https://doi.org/https://doi.org/10.52436/1.jutif.2024.5.1.1349
Shutaywi, M., & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 1–17. https://doi.org/10.3390/e23060759
Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLoS ONE, 19(12), 1–19. https://doi.org/10.1371/journal.pone.0310839
Yudhistira, A., & Andika, R. (2023). Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28. https://doi.org/10.58602/jaiti.v1i1.22