A Deep Learning Approach to Respiratory Disease Classification Using Lung Sound Visualization for Telemedicine Applications

  • Andi Enal Wahyudi Universitas Indonesia Timur, Makassar, Indonesia
  • Radus Batau Universitas Indonesia Timur, Makassar, Indonesia
  • Firman Aziz Universitas Pancasakti Makassar, Indonesia
  • Jeffry Jeffry Institut Teknologi Bacharuddin Jusuf Habibie
Keywords: respiratory classification, deep learning, lung sound, telemedicine, CNN-BiLSTM, audio spectrogram

Abstract

This study presents the development of an intelligent system for the classification of respiratory diseases using lung sound visualizations and deep learning. A hybrid Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN–BiLSTM) model was designed to classify four conditions: asthma, bronchitis, tuberculosis, and normal (healthy). Lung sound recordings were converted into time-frequency representations (e.g., mel-spectrograms), enabling spatial-temporal feature extraction. The system achieved an overall classification accuracy of 99.5%, with F1-scores above 0.93 for all classes. The confusion matrix revealed minimal misclassifications, primarily between asthma and bronchitis. These results suggest that the proposed model can effectively support real-time, non-invasive respiratory screening, particularly in telemedicine environments. Future work includes clinical validation, integration of patient metadata, and adoption of transformer-based models to further enhance diagnostic performance.

References

Acharya, J., & Basu, A. (2020). Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning. IEEE Transactions on Biomedical Circuits and Systems, 14(3), 535–544. https://doi.org/10.1109/TBCAS.2020.2981172

Alqudah, A. M., Qazan, S., & Obeidat, Y. M. (2022). Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds. Soft Computing, 26(24), 13405–13429. https://doi.org/10.1007/S00500-022-07499-6/METRICS

Bardou, D., Zhang, K., & Ahmad, S. M. (2018). Lung sounds classification using convolutional neural networks. Artificial Intelligence in Medicine, 88, 58–69. https://doi.org/10.1016/J.ARTMED.2018.04.008

Gairola, S., Tom, F., Kwatra, N., & Jain, M. (2021). RespireNet: A Deep Neural Network for Accurately Detecting Abnormal Lung Sounds in Limited Data Setting. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2021-January, 527–530. https://doi.org/10.1109/EMBC46164.2021.9630091

García-Ordás, M. T., Benítez-Andrades, J. A., García-Rodríguez, I., Benavides, C., & Alaiz-Moretón, H. (2020). Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data. Sensors 2020, Vol. 20, Page 1214, 20(4), 1214. https://doi.org/10.3390/S20041214

Jaber, M. M., Abd, S. K., Shakeel, P. M., Burhanuddin, M. A., Mohammed, M. A., & Yussof, S. (2020). A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms. Measurement, 162, 107883. https://doi.org/10.1016/J.MEASUREMENT.2020.107883

Jung, S. Y., Liao, C. H., Wu, Y. S., Yuan, S. M., & Sun, C. T. (2021). Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features. Diagnostics 2021, Vol. 11, Page 732, 11(4), 732. https://doi.org/10.3390/DIAGNOSTICS11040732

Kim, Y., Hyon, Y. K., Jung, S. S., Lee, S., Yoo, G., Chung, C., & Ha, T. (2021). Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/S41598-021-96724-7;SUBJMETA=139,228,692,700;KWRD=DIAGNOSIS,HEALTH+SERVICES

Perna, D., & Tagarelli, A. (2019). Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2019-June, 50–55. https://doi.org/10.1109/CBMS.2019.00020

Wanasinghe, T., Bandara, S., Madusanka, S., Meedeniya, D., Bandara, M., & De La Torre Díez, I. (2024). Lung Sound Classification for Respiratory Disease Identification Using Deep Learning: A Survey. International Journal of Online and Biomedical Engineering, 20(10), 115. https://doi.org/10.3991/IJOE.V20I10.49585

Published
2025-10-30
Abstract viewed = 0 times
PDF downloaded = 0 times