Prediction of Protein Content of Shredded Goldfish Based on Physical Characteristics and Processing Process Using Random Forest Regression Method

  • Irene Devi Damayanti Universitas Kristen Indonesia Toraja
  • Muhammad Sofwan Adha Universitas Kristen Indonesia Toraja
  • Lisna Junita Pairunan Universitas Kristen Indonesia Toraja

Abstract

Shredded goldfish is a processed fishery product that has high nutritional value, especially in its protein content. This study aims to predict the protein content in shredded goldfish based on the physical characteristics of the ingredients (moisture, ash, fat, and crude fiber content) and processing parameters (temperature and frying time) using the Random Forest method. The data used consisted of 10 samples of proximate analysis results and were divided into training data (67%) and test data (33%). The model was evaluated using MAE, MSE, RMSE, and R-squared metrics. The evaluation results showed that the model produced an MAE of 0.5649, MSE of 0.5409, RMSE of 0.7354, and R² of 0.0898. The low R² value indicates that the model is still not optimal in explaining variations in the target data. The prediction of protein levels for new data with certain characteristics resulted in a value of 20.16%, which is still within the range of actual values. This research shows the potential of using machine learning methods in predicting the nutritional value of food products, although increased accuracy is still needed through additional data and exploration of other models. It is recommended that the frying temperature is 155°C to 160°C and the frying time is 11 minutes to 13 minutes to maintain optimal protein levels.

References

Aditya, H. P., Herpandi, H., & Lestari, S. (2016). Karakteristik Fisik, Kimia dan Sensoris Abon Ikan dari Berbagai Ikan Ekonomis Rendah. Jurnal FishtecH, 5(1), 61–72. https://doi.org/10.36706/fishtech.v5i1.3519

Adiyati, P. A. (2021). Implementasi Algoritma Random Forest. 8(1), 70–73.

Andhikawati, A., Junianto, J., Permana, R., & Oktavia, Y. (2021). Review: Komposisi Gizi Ikan Terhadap Kesehatan Tubuh Manusia. Marinade. https://doi.org/10.31629/marinade.v4i02.3871

Damongilala, L. J. (2021). Kandungan Gizi Pangan Ikan. Patma Media Grafindo Bandung, 1–60.

Forest, R., & Learning, M. (n.d.). Random Forest in Machine Learning Random Forest in Machine Learning. 2–4.

Fuadi, M., & Surnaherman, S. (2017). Cara Pengawetan Ikan Mas (Cyprinus carpio L) Dengan Menggunakan Fermentasi Limbah Kubis (Brassica oleracea). Agrintech: Jurnal Teknologi Pangan Dan Hasil Pertanian, 1(1), 55–63. https://doi.org/10.30596/agrintech.v1i1.1669

Handhini Dwi Putri, Haninah, Elfidasari, D., & Sugoro, I. (2022). Kandungan Nutrisi Abon Ikan Sapu-Sapu (Pterygoplichthys Pardalis) Asal Sungai Ciliwung, Indonesia. Jurnal Pengolahan Pangan, 7(1), 14–19. https://doi.org/10.31970/pangan.v7i1.62

Herson, N. A., Sumual, M. F., Rumengan, I. F. M., Pongoh, J., & Mandey, L. C. (2023). Proximate Analysis Of Collagen Cockatoa Fish Scales (Scarus sp.). Jurnal Agroekoteknologi Terapan, 4(2), 428–433. https://doi.org/10.35791/jat.v4i2.52484

Ihzaniah, L. S., Setiawan, A., & Wijaya, R. W. N. (2023). Perbandingan Kinerja Metode Regresi K-Nearest Neighbor dan Metode Regresi Linear Berganda pada Data Boston Housing. Jambura Journal of Probability and Statistics, 4(1), 17–29. https://doi.org/10.34312/jjps.v4i1.18948

Lu, B., & Hardin, J. (2021). A unified framework for random forest prediction error estimation. Journal of Machine Learning Research, 22.

Pasinggi, E. S., Damayanti, I. D., & Kannapadang, S. (2023). Pendampingan UMKM Barrent Foods , Desa Wisata Randanan untuk Peningkatan Kapasitas Produksi dan Pemasaran Abon Ikan Mas. 1(10), 2547–2552.

Ramosaj, B. (2021). Interpretable Machines: Constructing Valid Prediction Intervals with Random Forests. http://arxiv.org/abs/2103.05766

Tatachar, A. V. (2021). Comparative assessment of regression models based On model evaluation metrics. International Research Journal of Engineering and Technology, 8(9), 853–860. https://d1wqtxts1xzle7.cloudfront.net/73250877/IRJET_V8I9127-libre.pdf

Urrochman, M. Y., Asy’ari, H., & Hizham, F. A. (2025). Performance Comparison of Random Forest Regression, Svr Models in Stock Price Prediction. Jurnal Pilar Nusa Mandiri, 21(1), 16–23. https://doi.org/10.33480/pilar.v21i1.6072

Wang, Y., Wu, H., & Nettleton, D. (2023). Stability of Random Forests and Coverage of Random-Forest Prediction Intervals. Advances in Neural Information Processing Systems, 36(1), 1–28.

Published
2026-01-29
Abstract viewed = 10 times
PDF downloaded = 9 times