Design of IoT-Based Energy Meter for Efficiency and Disturbance Detection
Abstract
The increasing need for energy consumption monitoring has driven the development of systems capable of providing accurate electrical information and detecting disturbances at an early stage. This study aims to design an IoT-Based Energy Meter capable of monitoring electrical parameters in real time and detecting load anomalies as a basis for energy efficiency analysis. The system uses a PZEM-004T sensor and an ESP32 microcontroller to measure voltage, current, power, energy, and power factor (cos φ). The data is transmitted to an IoT platform via a wireless connection so it can be monitored remotely. A Long Short-Term Memory (LSTM) model is applied to identify normal power consumption patterns and detect deviations, while a rule-based method is used to detect critical conditions such as overcurrent. Test results show that the device is capable of performing measurements with high accuracy, with error percentages for voltage, current, power, and cos φ parameters ranging between 0%–5% for three types of loads: iron, electric fan, and refrigerator. The LSTM model also successfully detects anomalies such as power spikes, sudden current changes, and disconnected loads with a confidence level of 0.99–1.00. The integration of IoT, artificial intelligence, and basic protection systems results in a reliable and responsive monitoring device. In the future, this system has the potential to be developed for automatic efficiency analysis and intelligent load control.
References
Adhicandra, I. (2024). Studi Kasus Tentang Penggunaan Teknologi Internet of Things (Iot) Dalam Meningkatkan Efisiensi Energi Di Bangunan Pintar. EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi, 11(3), 1447–1457. https://doi.org/10.47668/edusaintek.v11i3.1297
Aditya, A. W. (2024). Penerapan Internet of Things Untuk Monitoring Kinerja Sensor Untuk Deteksi Dini Kebakaran. 10(2).
Alexcandra, H., Ghazali, T. A. Al, Sitompul, R. A., & Sitorus, W. M. (2024). SISTEM PEMANTAUAN DAN PENGENDALIAN ENERGI BERBASIS IOT UNTUK MENINGKATKAN EFISIENSI ENERGI DALAM LINGKUNGAN CERDAS. 7(2022), 16983–16986.
Andrianto, H., Susanthi, Y., Jonathan, V., & Teknik, F. (n.d.). Platform Sistem Pemantauan Penggunaan Energi Listrik Berbasis IoT. November 2023, 199–212.
Ashad, B. A., & Ramdaniah. (2024). Pengembangan Alat Kontrol Pemakaian Listrik Berbasis Internet Of Things (IoT) Pada kWh Meter Pascabayar. 09(02), 53–56.
Azizi, D., & Arinal, V. (2023). Sistem Monitoring Daya Listrik Menggunakan Internet of Thing (Iot) Berbasis Mobile. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 4(3), 1808–1813. https://doi.org/10.35870/jimik.v4i3.409
Hari, H. P., Hamzah Eteruddin, Monice, & Achmad Nur Aliansyah. (2022). Analisis Sistem Monitoring Daya Listrik Menggunakan Internet of Things ( IoT ) Pada Gedung Teknik Elektro Politeknik Negeri Bengkalis. Jurnal Fokus Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika Dan Kendali), 7(4), 207–211. https://doi.org/10.33772/jfe.v7i4.7
Impron, A. (2025). Analisis Pola Konsumsi Energi Listrik Rumah Tangga Berbasis Simulasi IoT Menggunakan Model Hybrid LSTM-Attention Analysis of Household Electricity Consumption Patterns Based on IoT Simulation Using Hybrid LSTM-Attention Model. 1, 361–369. https://doi.org/10.26798/jiko.v9i1.1922
Jokanan, J. W., Widodo, A., Kholis, N., & Rakhmawati, L. (2022). Rancang Bangun Alat Monitoring Daya Listrik Berbasis IoT Menggunakan Firebase dan Aplikasi. Jurnal Teknik Elektro, 11(1), 47–55. https://doi.org/10.26740/jte.v11n1.p47-55
Kurniansyah, J., Gusti, S. K., Yanto, F., & Affandes, M. (2025). Implementasi Model Long Short Term Memory ( LSTM ) dalam Prediksi Harga Saham. 6(2), 79–86. https://doi.org/10.47065/bit.v5i2.1783
Laksono, D. T., Afrianti, R., Fatma, M. W., Prasafitri, M., & Alchudri, H. (2025). Rancang Bangun Sistem Pemantauan Energi Listrik dengan Automatic Transfer Switch. Jurnal Informatika Dan Teknik Elektro Terapan, 13(1). https://doi.org/10.23960/jitet.v13i1.5492
Lesmideyarti, D., & Rahman, F. Z. (2024). Penerapan Internet of Things Pada Sistem Kendali Pengisian Token Listrik Prabayar. 10(2).
Pela, M. F., & Pramudita, R. (2021). Sistem Monitoring Penggunaan Daya Listrik Berbasis Internet of Things Pada Rumah Dengan Menggunakan Aplikasi Blynk. Infotech: Journal of Technology Information, 7(1), 47–54. https://doi.org/10.37365/jti.v7i1.106
Poetra, C. K., Pane, S. F., Nuraini, R., & Fatonah, S. (n.d.). Meningkatkan Akurasi Long-Short Term Memory ( LSTM ) pada Analisis Sentimen Vaksin Covid-19 di Twitter dengan Glove. 16(2), 85–90.
Purnomo, H., Suyono, H., & Hasanah, R. N. (2021). PERAMALAN BEBAN JANGKA PENDEK SISTEM KELISTRIKAN KOTA BATU MENGGUNAKAN DEEP LEARNING LONG SHORT-TERM MEMORY. 3, 97–102.
Saputra, Y. A., Yusuf, M. R., & Sutabri, T. (2025). Implementasi Teknologi Internet of Things ( Iot ) dalam Pengelolaan Penghematan Listrik untuk Smart Home. 9, 541–547.
Suarna, D., & Sopyan, E. (2023). Implementasi Internet of Things ( IoT ) dalam Memonitoring Komsumsi Listrik. 4(2), 163–170.
Suga, M. I., & Nurwarsito, H. (2021). Sistem Monitoring KWH Meter berbasis Modul Komunikasi LoRa. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1257–1266.
Widodo, B. (2022). Peningkatan Energi Listrik Serta Daya Keluaran Pada Panel Surya Dengan Penambahan Sistem Pendingin Heatsink Dan Reflektor Alluminium Foil. 03.





