Bayesian-Optimized Prophet for Tourism-Based Regional Government Revenue Forecasting
Abstract
Accurate hotel tax revenue forecasting is critical for supporting proactive fiscal planning in tourism-dependent local governments . Hotel tax revenues in these regions exhibit high volatility influenced by seasonal tourism patterns, visitor preferences, economic conditions, and external shocks such as the COVID-19 pandemic . Traditional time series forecasting methods such as Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing struggle to capture complex seasonal patterns and accommodate multiple external factors . Recent advances in time series forecasting—particularly Facebook's Prophet framework—offer automatic decomposition of trend, seasonality, and holiday effects, plus the ability to integrate external regressors . However, Prophet's performance is highly sensitive to hyperparameter configurations, and default settings often produce suboptimal results on volatile data . Bayesian Optimization has emerged as an efficient technique for hyperparameter tuning, achieving convergence with significantly fewer iterations compared to exhaustive grid search . This study develops and validates a Bayesian-Optimized Prophet Framework for forecasting monthly hotel tax revenue in Kabupaten Tana Toraja, a cultural tourism destination in Indonesia, over 60 months (January 2020–December 2024) encompassing normal conditions, pandemic disruption, and recovery phases. The optimized model achieved Mean Absolute Percentage Error (MAPE) of 9.59% compared to baseline Prophet's 33.72%—a 71.55% improvement in forecasting accuracy. Mean Absolute Error (MAE) reduced from Rp 11.76 million to Rp 3.34 million per month. Robustness testing during COVID-19 pandemic demonstrated model stability with MAPE ≤15% despite >60% revenue decline. The framework provides 24-month forecasts (2025–2026) with 95% confidence intervals and decision-support capability with lead-time advantage of 3–6 months for early revenue shortfall detection. This research contributes a reproducible, efficient methodology for hyperparameter tuning in time series forecasting within fiscal planning domain, applicable to other tourism-dependent regions and tax categories.
References
Zhang, Y., Chen, X., & Liu, L. (2024). Optimizing short-term photovoltaic power forecasting: A novel approach with Gaussian process regression and Bayesian hyperparameter tuning. Processes, 12(3), 523.
Kumar, A., Singh, P., & Gupta, R. (2023). Bayesian optimization based hyperparameter tuning of ensemble regression models for air quality forecasting. IEEE Transactions on Industrial Informatics, 19(4), 5234–5245.
Dewi, N. K., & Saputra, I. P. (2020). Analisis potensi pajak hotel dan konstribusinya terhadap PAD Kabupaten Badung. E-Journal Akuntansi, 30(2), 412–425.
Garcia, M. T., Rodriguez, C., & López, P. (2021). Modeling and forecasting daily hotel demand: A comparison based on SARIMAX, neural networks, and GARCH models. Forecasting, 3(2), 331–348.
Santos, J. M., Silva, R., & Costa, A. (2021). Bernoulli time series modelling with application to accommodation tourism demand. Forecasting, 3(2), 280–305.
Rahayu, S., & Martini, Y. (2022). Analysis of original local government revenue (PAD) on the financial performance of Kebumen Regency before and during the COVID-19 Pandemic. Journal of Accounting and Strategic Finance, 5(1), 88–102.
Susanti, D., Hermanto, B., & Wijaya, T. (2023). Pengaruh pajak hiburan, hotel, restoran, dan reklame terhadap Pendapatan Asli Daerah (PAD) Kota Batu. Jurnal Riset Akuntansi dan Keuangan Daerah, 7(2), 234–248.
Anwar, S., Hermanto, & Nugroho, B. (2022). Analisis pemetaan potensi dan optimalisasi pajak hotel dan restoran di Kawasan Ekonomi Khusus (KEK) Mandalika Resort dalam rangka meningkatkan Pendapatan Asli Daerah (PAD) Kabupaten Lombok Tengah. Jurnal Ekonomis Bisnis, 8(1), 112–128.
Hidayat, R., Pranoto, S., & Wijaya, H. (2023). Effectiveness and contribution of the hotel tax revenue in optimization of original local government revenue in Banyuwangi Regency. Educoretax: Jurnal Perpajakan Indonesia, 4(2), 156–171.
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems, 24, 2546–2554.
Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv Preprint arXiv:1012.2599.
Hyndman, R. H., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27(3), 1–22.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889.
Badan Pusat Statistik Republik Indonesia. (2024). Statistik Kunjungan Wisatawan dan Tingkat Okupansi Hotel di Indonesia 2020–2024. Jakarta: BPS-Statistics Indonesia.
Keputusan Menteri Dalam Negeri Nomor 130 Tahun 2018 tentang Sumber-Sumber Pendapatan Asli Daerah. Berita Negara Republik Indonesia Tahun 2018 Nomor 1662.





