Energy Efficient IoT-Based Forest Fire Detection Using LoRaWAN and AI
Abstract
Forest fires remain a global problem that has a major impact on the economy and health. Indonesia suffered losses of up to Rp. 72.95 trillion due to forest fires in 2019. Internet of Things (IoT) technology can be used for early detection of forest fires, but is constrained by limited network infrastructure and high energy consumption. This study aims to design a smart mitigation device and application for early detection of forest fires using LoRaWAN technology, which does not require an internet connection from the node to the gateway. In addition, an Artificial Intelligence method with adaptive sampling is applied, namely adaptive sampling threshold modeling and reinforcement Q-learning on the gateway to optimize energy use. The method used is Research and Development (R&D), with testing of the effectiveness of the design and descriptive statistical analysis to compare the energy efficiency between LoRaWAN devices with AI and conventional smart mitigation devices. The results of the study show that LoRa-based mitigation devices can cover the entire Jompie Botanical Garden area with a transmission distance of up to 3 kilometers and are 105% more energy efficient than conventional mitigation devices.
References
Aan Ariska Febriansyah. (2023). Kebun Raya Jompie, Hutan Alami di Tengah Kota Parepare. Www.Rro.Cp.Id. https://www.rri.co.id/wisata/213399/kebun-raya-jompie-hutan-alami-di-tengah-kota-parepare#:~:text=Di Indonesia%2C hanya ada dua,spot alami menarik untuk berfoto.
Arumingtyas, L. (2019, 16). Bank Dunia: Kerugian Indonesia Dampak Karhutla 2019 Capai Rp72,95 Triliun. Mongabay.Co..Id. https://www.mongabay.co.id/2019/12/16/bank-dunia-kerugian-indonesia-dampak-karhutla-2019-capai-rp7295-triliun/
Avila-Campos, P., Astudillo-Salinas, F., Vazquez-Rodas, A., & Araujo, A. (2019). Evaluation of lorawan transmission range for wireless sensor networks in riparian forests. MSWiM 2019 - Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 199–206. https://doi.org/10.1145/3345768.3355934
Cai, Q., Cui, C., Xiong, Y., Wang, W., Xie, Z., & Zhang, M. (2023). A Survey on Deep Reinforcement Learning for Data Processing and Analytics. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4446–4465. https://doi.org/10.1109/TKDE.2022.3155196
Fathoni, A., & Oktiawati, U. (2021). Blackbox Testing terhadap Prototipe Sistem Monitoring Kualitas Air Berbasis IoT. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10, 362–368. https://doi.org/10.22146/jnteti.v10i4.2095
Gaveau, D. L. A., Descals, A., Salim, M. A., Sheil, D., & Sloan, S. (2021). Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning. Earth System Science Data, 13(11), 5353–5368. https://doi.org/10.5194/essd-13-5353-2021
Grant, E., & Runkle, J. D. (2022). Long-term health effects of wildfire exposure: A scoping review. The Journal of Climate Change and Health, 6, 100110. https://doi.org/https://doi.org/10.1016/j.joclim.2021.100110
Irfanianingrum, I., Rizal Chaidir, A., Sumardi, S., Aditya Rahardi, G., & Wahyu Herdiyanto, D. (2023). Sistem Pendeteksi Dini Kebakaran Hutan Berbasis Logika Fuzzy dengan Integrasi Telegram. Emitor: Jurnal Teknik Elektro, 22(2), 120–127. https://doi.org/10.23917/emitor.v22i2.22019
Kavitha, S., Kanchana, K., & Venkatesan, G. (2023). Long Range (LoRa) and Alert Network System for Forest Fire Prediction. Asian Journal of Water, Environment and Pollution, 20(6), 61–66. https://doi.org/https://doi.org/10.3233/AJW230080
Pambudi, S. A., Rahma, I. M., Artono, B., Prasetyo, Y., & Baidlowi, I. (2023). Sistem Monitoring Alat Pendeteksi Dan Pemadam Kebakaran Hutan Bertenaga Solar Cell Berbasis Internet of Things ( IoT ). Journal of Electrical,Electronic,Control and Automotive Engineering, 8(1), 13–21.
Rajab, H., Al-Amaireh, H., Bouguera, T., & Cinkler, T. (2023). Evaluation of energy consumption of LPWAN technologies. Eurasip Journal on Wireless Communications and Networking, 2023(1). https://doi.org/10.1186/s13638-023-02322-8
Rodriguez-Pabon, C., Riva, G., Zerbini, C., Ruiz-Rosero, J., Ramirez-Gonzalez, G., & Corrales, J. C. (2022). An Adaptive Sampling Period Approach for Management of IoT Energy Consumption: Case Study Approach. Sensors, 22(4), 1–22. https://doi.org/10.3390/s22041472
Saputro, U. A., & Tuslam, A. (2022). Sistem Deteksi Kebakaran Berbasis Internet Of Things Dengan Pesan Peringatan Menggunakan NodeMCU ESP8266 Dan Platform ThingSpeak. Jurnal Infomedia, 7(1), 24. https://doi.org/10.30811/jim.v7i1.2958
Waruwu, M. (2024). Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan. Jurnal Ilmiah Profesi Pendidikan, 9, 1220–1230. https://doi.org/10.29303/jipp.v9i2.2141





