Daily Electricity Load Forecasting in Ternate City Using ELM

  • Andi Muhammad Ilyas Khairun University
  • Muhammad Natsir Rahman Khairun University
  • Aldi Aswat Khairun University
  • Faris Syamsuddin Khairun University
  • Suparman Suparman Khairun University
  • Bayu Adrian Ashad Universitas Muslim Indonesia
  • Agus Siswanto Universitas 17 Agustus 1945
Keywords: ELM, Electricity Load Forecasting, Daily Load, Power Quality, Ternate City

Abstract

The continuously increasing growth of electricity demand necessitates accurate and systematic planning of electric power systems to ensure power flow quality and system reliability. Ternate City, as one of the major activity centers in North Maluku Province, has experienced a substantial rise in electricity consumption, thereby requiring an effective and reliable load forecasting approach. This study aims to predict the daily electricity load in Ternate City using the Extreme Learning Machine (ELM) method. The analysis is conducted using historical electricity load data, which are processed through data preprocessing stages, dataset partitioning into training and testing sets, and ELM-based modeling. The performance of the proposed model is evaluated using the Mean Absolute Percentage Error (MAPE). The results indicate that the MAPE values for the training dataset range from 5.84% to 13.63%, corresponding to very good to good performance categories. Meanwhile, the testing dataset yields MAPE values ranging from 13.45% to 33.09%, which fall within the good to sufficient performance categories. Furthermore, the prediction results are able to accurately capture daily electricity load fluctuation patterns from Monday to Sunday, including peak load periods. Based on these findings, the ELM method demonstrates strong potential as a reliable approach to support electric power system planning and to enhance the quality and reliability of electricity supply in Ternate City.

References

Abbas, M., Che, Y., Maqsood, S., Yousaf, M. Z., Abdullah, M., Khan, W., Khalid, S., Bajaj, M., & Shabaz, M. (2025). Self-adaptive evolutionary neural networks for high-precision short-term electric load forecasting. Scientific Reports, 15(1), 1–21. https://doi.org/10.1038/s41598-025-05918-w

Alsalem, K. (2025). A hybrid time series forecasting approach integrating fuzzy clustering and machine learning for enhanced power consumption prediction. Scientific Reports, 15(1), 1–16. https://doi.org/10.1038/s41598-025-91123-8

Brahim, R., Ahlam, L., Hamza, A., & Güler, İ. (2025). Power Forecasting Using ANN and ELM: A Comparative Evaluation of Machine Learning Approaches. Mathematical Modelling of Engineering Problems, 12(1), 1–8. https://doi.org/10.18280/mmep.120101

Caessar, A. S., & Nrartha, I. M. A. (2024). Perbandingan Metode Koefisien Dengan Jaringan Syaraf Tiruan Pada Peramalan Beban Listrik Jangka Pendek. 6(November 2023), 1–8.

de Mattos Neto, P. S. G., de Oliveira, J. F. L., Bassetto, P., Siqueira, H. V., Barbosa, L., Alves, E. P., Marinho, M. H. N., Rissi, G. F., & Li, F. (2021). Energy consumption forecasting for smart meters using extreme learning machine ensemble. Sensors, 21(23), 1–18. https://doi.org/10.3390/s21238096

Hussain, I., Ching, K. B., Uttraphan, C., Tay, K. G., & Noor, A. (2025). Evaluating machine learning algorithms for energy consumption prediction in electric vehicles: A comparative study. Scientific Reports, 15(1), 1–20. https://doi.org/10.1038/s41598-025-94946-7

Ilyas, A. M., Suyuti, A., Gunadin, I. C., & Said, S. M. (2021). Forecasting model of power generated by wind power plants. IOP Conference Series: Earth and Environmental Science, 926(1). https://doi.org/10.1088/1755-1315/926/1/012084

Ilyas, A. M., Suyuti, A., Gunadin, I. C., & Said, S. M. (2022). Optimal Power Flow Model Integrated Electric Power System with Wind Power Generation - Case Study: Electricity System South Sulawesi-Indonesia. International Journal of Intelligent Engineering and Systems, 15(4), 415–425. https://doi.org/10.22266/ijies2022.0831.37

Jain, A., & Gupta, S. C. (2024). Evaluation of electrical load demand forecasting using various machine learning algorithms. Frontiers in Energy Research, 12(June), 1–18. https://doi.org/10.3389/fenrg.2024.1408119

Kireyna Cindy Pradhisa, K., & Yotenka, R. (2024). Penerapan Metode Extreme Learning Machine (ELM) untuk Meramalkan Produksi Air Minum dan Air yang Dijual di Kota Yogyakarta Tahun 2023. Emerging Statistics and Data Science Journal, 2(2), 258–263. https://doi.org/10.20885/esds.vol2.iss.2.art19

Kızıldağ, M., Abut, F., & Akay, M. F. (2024). Development of New Electricity System Marginal Price Forecasting Models Using Statistical and Artificial Intelligence Methods. Applied Sciences (Switzerland), 14(21). https://doi.org/10.3390/app142110011

Malini, R. S., Sahroni, A., & Setiawan, H. (2025). Analisis Tren Historis Dan Prediksi Beban Listrik Pada Tenaga Listrik Menggunakan Artificial Neural Network Dengan Metode Backpropagation : Systematic Literature Review. 27(2), 162–168.

Morais, E. M. T. P. V. G. ; H. (2022). Electrical Load Demand Forecasting Using Feed-Forward Neural Networks. Energies, 606(February), 1–15. https://doi.org/10.1007/978-3-319-58487-4_9

Román, S. A. R. L., Collazos, S. Z., & Chavez, J. A. C. (2024). Model for Reducing Mean Absolute Percentage Error through Smoothing and Time Series Forecasting In a Tourism SME: A Case Study. Journal of Machine Intelligence and Data Science, 5. https://doi.org/10.11159/jmids.2024.012

Said, S. M., & Ilyas, A. M. (2024). Forecasting South Sulawesi Electrical Energy Consumption Using Artificial Neural Network. Przeglad Elektrotechniczny, 2024(3), 191–195. https://doi.org/10.15199/48.2024.03.34

Shafiullah, M., Rana, M. J., Shahriar, M. S., Al-Sulaiman, F. A., Ahmed, S. D., & Ali, A. (2021). Extreme learning machine for real-time damping of LFO in power system networks. Electrical Engineering, 103(1), 279–292. https://doi.org/10.1007/s00202-020-01075-7

Sun, L., Lin, Y., Pan, N., Fu, Q., Chen, L., & Yang, J. (2023). Demand-Side Electricity Load Forecasting Based on Time-Series Decomposition Combined with Kernel Extreme Learning Machine Improved by Sparrow Algorithm. Energies, 16(23). https://doi.org/10.3390/en16237714

Wang, H., Zhang, Y., & Mu, L. (2024). Short-Term Electrical Load Forecasting Using an Enhanced Extreme Learning Machine Based on the Improved Dwarf Mongoose Optimization Algorithm. Symmetry, 16(5). https://doi.org/10.3390/sym16050628

Wang, J., Lu, S., Wang, S., & Zhang, Y. (2022). A review on extreme learning machine. Springer, 41611–41660.

Yu, G. L. Z. J. H. (2024). Short‑Term Electrical Load Forecasting Based on Fuzzy Rough Set Feature Selection and Multi‑kernel Extreme Learning Machine. Springer.

Zhao, X., Wang, J., Zhang, T., Cui, D., Li, G., & Zhou, M. (2022). A novel short-term load forecasting approach based on kernel extreme learning machine: A provincial case in China. IET Renewable Power Generation, 16(12), 2658–2666. https://doi.org/10.1049/rpg2.12373

Published
2026-01-29
Abstract viewed = 11 times
PDF downloaded = 8 times