Analysis of Rain Intensity in West Java Province in 2020 Using the Association Rule Apriori and FP-Growth

  • Bagus Almahenzar Politeknik Statistika STIS
  • Arie Wahyu Wijayanto Badan Pusat Statistik
Keywords: Association Rule, Apriori, FP-Growth, Rainfall Intensity

Abstract

West Java is one of the areas in Indonesia with high rainfall. One of the causes of frequent flooding in the DKI Jakarta area is due to receiving water from the West Java area. The method used in this study is the Association Rule using the Apriori algorithm and FP-Growth. Association rule is a rule in data mining in determining all association rules that meet the minimum support (minsup) and minimum confidence (minconf) requirements in a dataset. In this study, the minimum support used is 5 and the minimum confidence is 0.9. The purpose of this study was to obtain a pattern of rainfall intensity that often occurs every month in the measurement station areas. The measurement stations in the West Java region are the Citeko Meteorological Station, the Penggung Meteorological Post, the Kertajati Meteorological Station, the Bogor Climatology Station, and the Bandung Geophysics Station. The results of this study indicate that in April, May, June, October, and November there is no pattern of rain intensity that occurs between the measurement station areas. Heavy, very heavy, and extreme rains are very rare. In July, August, and September, most areas do not experience rain.

References

Diniari., E. B., "Pembagian Waktu dan Perubahan Musim di Indonesia," ruangguru, 2020. [Online]. Tersedia: https://www.ruangguru.com/blog/pembagian-waktu-dan-perubahan-musim-di-indonesia. [Diakses: 17-Desember-2021]

Badan Meteorologi Klimatologi dan Geofisika, "Prakiraan Musim Hujan 2021/2022 di Indonesia," BMKG, 2021. [Online]. Tersedia: https://www.bmkg.go.id/iklim/prakiraan-musim.bmkg.

Badan Pusat Statistik, "Jumlah Curah Hujan dan Jumlah Hari Hujan di Stasiun Pengamatan BMKG, 2011-2015," BPS, 2017. [Online]. Tersedia: https://www.bps.go.id/statictable/2017/02/08/1959/jumlah-curah-hujan-dan-jumlah-hari-hujan-di-stasiun-pengamatan-bmkg-2011-2015.html

Badan Meteorologi Klimatologi dan Geofisika, "Probabilitas Curah Hujan 20 mm (tiap 24 jam)," BMKG, 2021. [Online]. Tersedia: https://www.bmkg.go.id/cuaca/probabilistik-curah-hujan.bmkg.

Putri, S. R., & Wijayanto, A. W. (2021). Learning Bayesian Network for Rainfall Prediction Modeling in Urban Area using Remote Sensing Satellite Data (Case Study: Jakarta; Indonesia). Proceedings of The International Conference on Data Science and Official Statistics, 2021, 77-90.

Fauzy, M., Saleh W, K. R., & Asror, I. (2016). Penerapan Metode Association Rule Menggunakan Algoritma Apriori pada Simulasi Prediksi Hujan Wilayah Kota Bandung. Jurnal Ilmiah Teknologi Informasi Terapan. 2(2), 221-227.

Mansyur, F., & Ridho, F. (2020). Analisis Pola Permintaan Publikasi Data Badan Pusat Statistik Menggunakan Association Rule Apriori. Klik - Kumpulan Jurnal Ilmu Komputer. 7(2), 187-198.

Mishra, A. K., Pani, S. K., & Ratha, B. K. (2015). Association Rule Mining with Apriori and Fpgrowth Using Weka. International Journal of Advanced Technology in Engineering and Science. 3(1), 91-99.

Lestari, Y. D. (2015). Penerapan Data Mining Menggunakan Algoritma FP-Tree dan FP-Growth Pada Data Transaksi Penjualan Obat. Seminar Nasional Teknologi Informasi Dan Komunikasi (SNASTIKOM 2015), 60-65.

Badan Meteorologi Klimatologi dan Geofisika, "Data Online Pusat Database BMKG: Data Harian," BMKG, 2021. [Online]. Tersedia: https://dataonline.bmkg.go.id/data_iklim

Han, J., & Kamber, M. Data Mining: Concepts and Techniques. Department of Computer Science, University of Illinois. 3rd ed. Waltham: Morgan Kaufmann, 2012.

Asana, I. M. D. P., Wiguna, I. K. A. G., Atmaja, K. J., & Sanjaya, I. P. A. (2020). FP-Growth Implementation in Frequent Itemset Mining for Consumer Shopping Pattern Analysis Application. Jurnal Mantik, 4(3), 2063-2070.

Santoso, M. H. (2021). Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom. Brilliance: Research of Artificial Intelligence. 1(2), 54–66.

Syukra, I., Hidayat, A., & Fauzi, M. Z. (2019). Implementation of K-Medoids and FP-Growth Algorithms for Grouping and Product Offering Recommendations. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 107-115.

Thamrin, N., & Wijayanto, A. W. (2021). Comparison of Soft and Hard Clustering: A Case Study on Welfare Level in Cities on Java Island. Indonesian Journal of Statistics and Its Applications, 5(1), 141-160.

Damayanti, A. R., & Wijayanto, A. W. (2021). Comparison of Hierarchical and Non-Hierarchical Methods in Clustering Cities in Java Island using the Human Development Index Indicators year 2018. Eigen Mathematics Journal, 4(1), 8-17.

Afira, N., & Wijayanto, A. W. (2021). Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019. Komputika: Jurnal Sistem Komputer, 10(2), 101-109.

Sikana, A. M., & Wijayanto, A. W. (2021). Analisis Perbandingan Pengelompokan Indeks Pembangunan Manusia Indonesia Tahun 2019 dengan Metode Partitioning dan Hierarchical Clustering. Jurnal Ilmu Komputer, 14(2), 66-78.

Luthfi, E., & Wijayanto, A. W. (2021). Analisis Perbandingan Metode Hierarchical, K-Means, dan K-Medoids Clustering Dalam Pengelompokkan Indeks Pembangunan Manusia Indonesia. INOVASI, 17(4), 770-782

Fitriyani, F. (2016). Implementasi Algoritma FP-Growth Menggunakan Association Rule Pada Market Basket Analysis. Jurnal Informatika, 2(1), 296-304.

Arimbawa P, D. A. K., Prabawa, I. N. A., & Mertasana, P. A. (2019). Implementation of Apriori Algorithm in Determining Tourism Visit Patterns to Bali. International Journal of Engineering and Emerging Technology

Published
2022-07-25