Analisa Penyakit Jantung Menggunakan Algoritma Naïve Bayes
Abstract
Every year more than 2 million Americans die from heart disease which is the number one killer in the world. The results of the Sample Registration System (SRS) survey show that heart disease is the highest cause of death at all ages after stroke, which is 12.9%. The method used in this study uses the Naïve Bayes algorithm. The purpose of this study is to determine if anyone with heart disease has a stroke. From the research results obtained by splitting data using 80:20 to get a prediction accuracy rate of 83% for heart disease prediction cases. In the trial results using the label test data obtained, namely no stroke.
References
Derisma. (2020). Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining. Journal of Applied Informatics and Computing, 4(1), 84–88. https://doi.org/10.30871/jaic.v4i1.2152
Fiqriansyah, R., Akbar, F., Andiko, V. C., Ahmad, K. G., Rasywir, E., Meisak, D., Pratama, Y., & Feranika, A. (2022). Penerapan Algoritma Naïve Bayes Untuk Mengetahui Pasien Penyakit Gagal Jantung Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ). 2(September).
Handoko, M. R., & Neneng. (2021). Sistem Pakar Diagnosa Penyakit Ispa Menggunakan Metode Naive Bayes Classifier Berbasis Web. CSRID (Computer Science Research and Its Development Journal), 10(3), 127. https://doi.org/10.22303/csrid.10.3.2018.127-138
Laksana Utama, P. K. (2018). Identifikasi Hoax pada Media Sosial dengan Pendekatan Machine Learning. Widya Duta: Jurnal Ilmiah Ilmu Agama dan Ilmu Sosial Budaya, 13(1), 69. https://doi.org/10.25078/wd.v13i1.436
Nawawi, H. M., Purnama, J. J., & Hikmah, A. B. (2019). Komparasi Algoritma Neural Network Dan Naïve Bayes Untuk Memprediksi Penyakit Jantung. Jurnal Pilar Nusa Mandiri, 15(2), 189–194. https://doi.org/10.33480/pilar.v15i2.669
Putri, H., Purnamasari, A. I., Dikananda, A. R., Nurdiawan, O., & Anwar, S. (2021). Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN. Building of Informatics, Technology and Science (BITS), 3(3), 331–337. https://doi.org/10.47065/bits.v3i3.1093
Sabransyah, M., Nasution, Y. N., & Tisna, D. (2017). Aplikasi Metode Naive Bayes dalam Prediksi Risiko Penyakit Jantung Naive Bayes Method for a Heart Risk Disease Prediction Application. Jurnal EKSPONENSIAL, 8, 111–118.
Samosir, A., Hasibuan, M. S., Justino, W. E., & Hariyono, T. (2021). Komparasi Algoritma Random Forest, Naïve Bayes dan K- Nearest Neighbor Dalam klasifikasi Data Penyakit Jantung. Prosiding Seminar Nasional Darmajaya, 1(0), 214–222. https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2955
Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080
Widiastuti, N. A., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi Data Mining Naïve Bayes Berbasis Particle Swarm Optimization Untuk Deteksi Penyakit Jantung. Nature Methods, 7(1), 11. https://doi.org/10.1038/nmeth.f.284