Performa Klasifikasi Berbasis Jarak untuk Deteksi Covid-19 Varian Delta dan Omicron Menggunakan Citra CT-Scan Paru-Paru
Abstract
During the Covid-19 pandemic, there were two popular Covid-19 variants, namely Delta and Omicron. A non-laboratory approach is needed to detect the Delta and Omicron variants of Covid-19 to prevent a high risk of exposure to these two variants. This study proposes the detection of COVID-19 variants of Delta and Omicron using computerized tomography scan (CT-scan) images of the lungs using distance-based classification. There are 5 distance-based classification methods used to determine the best performance for the Delta and Omicron variant Covid-19 classification. Performance is measured based on the comparison of accuracy, precision and recall of each distance method. The distance method used in this study is Euclidean, Manhattan, Minkowski, Chebyshev, and Canberra. The dataset used was downloaded from the Kaggle database. There are 440 total CT-scan images of the lungs which are divided into 220 Covid-19 images of the Delta and Omicron variants and 220 non-Covid-19 images as training data. Meanwhile, there are test data of 140 Covid-19 images for the Delta and Omicron variants and 140 non-Covid-19 images. Based on the comparison of the performance of distance-based classification, it is concluded that the Manhattan Distance has the best performance compared to the other 4 distance methods. Manhattan distance has an accuracy of 58.57%, precision of 56.52%, and recall with a value of 74.28%. Meanwhile, the lowest accuracy value is owned by the Eucliean Distance of 48.21%. Then, the Minkowski distance has the lowest precision and recall with values of 48.41% and 54.28%.
References
Agustin, A. P., Fauzan, A. C., & Harliana, H. (2022). IMPLEMENTASI K-NEAREST NEIGHBOR DENGAN JARAK MINKOWSKI UNTUK DETEKSI DINI COVID-19PADA CITRA CT-SCAN PARU-PARU. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 4(1), 23–30.
Eviana, A., Fauzan, A. C., Harliana, H., & Putra, F. N. (2022). Komparasi Jarak Euclidean dan Jarak Manhattan Untuk Deteksi Covid-19 Melalui Citra CT-Scan Paru-Paru. Komputika : Jurnal Sistem Komputer, 11(2), 121–129. https://doi.org/10.34010/komputika.v11i2.5380
Fauzan, A. C., & Hikmah, K. (2022). IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM ANALISIS POLARISASI OPINI MASYARAKAT TERKAIT VAKSIN COVID-19. RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 122–128.
Ghaderzadeh, M., Eshraghi, M. A., Asadi, F., Hosseini, A., Jafari, R., Bashash, D., & Abolghasemi, H. (2022). Efficient Framework for Detection of COVID-19 Omicron and Delta Variants Based on Two Intelligent Phases of CNN Models. Computational and Mathematical Methods in Medicine, 2022(November 2021). https://doi.org/10.1155/2022/4838009
Hikmah, K., & Fauzan, A. C. (2022). Sentiment Analysis of Vaccine Booster during Covid-19: Indonesian Netizen Perspective Based on Twitter Dataset. Jurnal Teknologi Komputer Dan SIstem Informasi, 5(2), 102–106.
Jannah, M., & Humaira, N. (2019). Implementasi Metode Euclidean Distance Untuk Ekstraksi Fitur Jarak Pada Citra Skeleton. Jurnal Ilmiah Informatika Komputer, 24(2), 134–139. https://doi.org/10.35760/ik.2019.v24i2.2368
Maknun, L., Syukur, A., Affandy, A., & Soeleman, M. A. (2022). Deteksi Dini Covid-19 Melalui Citra CT-Scan Paru-Paru Menggunakan K-Nearest Neighbor dengan Komparasi Jarak. Jurnal Indonesia Sosial Teknologi, 3(3), 461–467. https://doi.org/10.36418/jist.v3i3.397
Muslim, I., Khosuri, A., Steiven, J., Septory, I., & Pebrian, D. (2022). Pengaruh Metode Pengukuran Jarak pada Algoritma k-NN untuk Klasifikasi Kebakaran Hutan dan Lahan. Jurnal Media Informatika Budidarma, 6(April), 1174–1182. https://doi.org/10.30865/mib.v6i2.3967
Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253
Nursofwa, R. F., Sukur, M. H., Kurniadi, B. K., & . H. (2020). Penanganan Pelayanan Kesehatan Di Masa Pandemi Covid-19 Dalam Perspektif Hukum Kesehatan. Inicio Legis, 1(1), 1–17. https://doi.org/10.21107/il.v1i1.8822
Wibowo, I. C., & Fauzan, C. (2022). Classification of Lung CT-Scan Images for Covid- 19 Detection Using Texture Feature Extraction and Naive Bayes Algorithm. The 1st Proceedings of the International Seminar on Business, Education and Science, August, 162–177.
Wolfe, M., Hughes, B., Duong, D., & Chan-herur, V. (2022). Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples. Applied and Environmental Microbiology, 88(8).
Yantahin, M. (2020). Content Based Image Retrieval (CBIR) Menggunakan Jarak dan Divergensi. E-Jurnal JUSITI (Jurnal Sistem Informasi Dan Teknologi Informasi), 9(2), 188–194. https://doi.org/10.36774/jusiti.v9i2.773